Cybersecurity Handbook

for

Civil Society Organizations

A guide for civil society organizations looking to get started on a cybersecurity plan

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Table of Contents

Visual Legend 4
The Top 10 6
Authors & Acknowledgments 7
Who are We? 7
Who is this Handbook for? 8
What is a security plan and why should my organization have one? 8
 - What assets does your organization have and what do you want to protect? 9
 - Who are your adversaries and what are their capabilities and motivations? 9
 - What threats does your organization face? And how likely and high-impact are they? 10
Creating your Organizational Cybersecurity Plan 11
 - Building a Culture of Security 12
 - Integrate Security into your Regular Operating Structure 13
 - Get Organizational Buy-In 14
 - Establish a Training Plan 14
 - A Strong Foundation: Securing Accounts and Devices 16
 - Secure Accounts: Passwords and Two Factor Authentication 18
 - Secure Devices 26
 - Phishing: A Common Threat to Devices and Accounts 32
 - Communicating and Storing Data Securely 37
 - Communications and Sharing Data 38
 - Storing Data Securely 50
 - Staying Safe on the Internet 53
 - Browsing Securely 54
 - Social Media Safety 64
 - Keep your Websites Online 66
 - Protect your WiFi Network 67
 - Protecting Physical Security 68
 - Protecting Physical Assets 70
 - What To Do When Things Go Wrong 74
Appendix A: Recommended Resources 78
Appendix B: Security Plan Starter Kit 79
Visual Legend

Throughout the Handbook, you will find a few different recurring, highlighted elements in addition to the main text. Here is a short “legend” to help you understand the core elements:

- **Case Study**: Indicates case studies that highlight the real-life impact of a certain topic on civil society organizations globally or in a specific country.

- **Extra Tips**: Highlights some extra tips and information to pay attention to as you read the Handbook.

- **Real World**: Calls out common examples of cybersecurity tactics tools used in the “real world”, both for good and for bad.

- **Advanced**: Indicates an advanced topic - information that is important for your organization to consider, but that might be a bit more technical or complicated.

- **Security Plan Building Blocks**: Indicates the "Security Plan Building Blocks", which are the key takeaways from each section of the Handbook.
1. Building a Culture of Security
2. A Strong Foundation: Securing Accounts and Devices
3. Communicating and Storing Data Securely
4. Staying Safe on the Internet
5. Protecting Physical Security
6. What To Do When Things Go Wrong
The Top 10

These ten elements are critical to your organization’s security plan. If you are looking for somewhere to start, look here first.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conduct regular security training within your organization</td>
<td>Be alert to phishing and have a reporting system</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Use encryption for all communication - end-to-end, when possible</td>
<td>Require strong passwords and implement a password manager across your organization</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Require two factor authentication wherever possible</td>
<td>Ensure all staff devices and software are kept up-to-date</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Use secure cloud storage</td>
<td>Use HTTPS and, if appropriate, a VPN, for accessing the internet</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Protect your organization’s physical assets</td>
<td>Develop an organizational incident response plan</td>
</tr>
</tbody>
</table>
Authors & Acknowledgments

Lead Author: Evan Summers (NDI)
Contributing Authors: Sarah Moulton (NDI); Chris Doten (NDI)

In developing this Handbook, we’d like to particularly thank our expert external reviewers who provided us with valuable feedback, edits, and suggestions as we pulled together this content, including:

Fiona Krakenburger, Open Technology Fund; Bill Budington and Shirin Mori, Electronic Frontier Foundation; Jocelyn Woolbright, Cloudflare; Martin Shelton, Freedom of the Press Foundation; Dave Leichtman, Microsoft; Stephen Boyce, International Foundation for Electoral Systems; Amy Studdart, International Republican Institute; Emma Hollingsworth, Global Cyber Alliance; Caroline Sinders, Convocation Design + Research; Dhyta Caturani; Sandra Pepera, NDI; Aaron Azelton, NDI; and Whitney Pfeifer, NDI.

We also want to acknowledge all the incredible manuals, guides, workbooks, training modules and other materials developed and maintained by the Organizational Security (OrgSec) Community. This Handbook is designed to complement those more in-depth materials, combining key lessons into a one-stop, easy-to-read resource for civil society organizations looking to get started on a cybersecurity plan.

In addition to taking indirect inspiration from many wonderful resources compiled by the community, we have directly copied useful language from a handful of existing resources as well throughout this Handbook, particularly the Electronic Frontier Foundation’s Surveillance Self Defense Guide, Tactical Tech’s Holistic Security Manual, and a range of explainers from the Center for Democracy and Technology and the Freedom of the Press Foundation. You can find specific citations to these resources throughout the sections below, and complete links, author, and license information within Appendix A.

We also strongly recommend that anyone reading this Handbook make use of the extensive library of digital security guides and resources compiled and updated by the Open Technology Fund.

Who are We?

The National Democratic Institute for International Affairs (NDI) is a nonprofit, nonpartisan organization, based in Washington D.C., that works in partnership around the world to strengthen and safeguard democratic institutions, processes, norms and values to secure a better quality of life for all.

NDI believes all people have the right to live in a world that respects their dignity, security, and political rights—and that the digital world is no exception.
Who is this Handbook for?

This Handbook was written with a simple goal in mind: to help your civil society organization develop an understandable and implementable cybersecurity plan.

As the world increasingly moves online, cybersecurity is not just a buzzword but a critical concept for the success of an organization and safety of a team. Particularly for civil society organizations in the democracy, advocacy, accountability, and human rights spaces, the security of information (both online and off) is a challenge that requires focus, investment and vigilance.

Your organization will likely find itself – if it has not already – the target of a cybersecurity attack. This is not intended to be alarmist; it is reality even for organizations that do not consider themselves to be particular targets.

In an average year, the Center for Strategic and International Studies, which maintains a running list of what they term “Significant Cyber Incidents”, catalogues hundreds of serious cyber attacks, many of which target dozens if not hundreds of organizations at once. In addition to such reported attacks, there are likely hundreds of other smaller attacks each year that go undetected or unreported, many aimed at civil society organizations working to support democracy, accountability, and human rights. Organizations representing women or other marginalized groups are often particularly targeted.

Cyberattacks like these have significant consequences. Whether their aim is to take your money, repress your voice, disrupt your organizational operations, damage your reputation, or even steal information that can lead to psychological or physical harm to your partners or staff, such threats need to be taken seriously. The good thing is that you do not need to become a coder or a technologist to defend yourself and your organization against common threats. But you do need to be prepared to invest some effort, energy, and time in developing and implementing a strong organizational security plan. If you have never thought about cybersecurity in your organization, have not had time to focus on it, or know some basics about the topic but think your organization could enhance its cybersecurity, this Handbook is for you. Regardless of where you are coming from, this Handbook aims to give your organization the essential information it needs to put a strong security plan in place. A plan that goes beyond simply putting words on paper and enables you to put best practices into action.

What is a security plan and why should my organization have one?

A security plan is the set of written policies, procedures, and instructions your organization has agreed upon to achieve the level of security you and your team think is appropriate to keep your people, partners, and information safe.

A well-crafted and updated organizational security plan can both keep you safe and make you more effective by providing the peace of mind needed to focus on your organization’s important day-to-day work. Without thinking through a comprehensive plan, it is very easy to be blind to some types of threats, focusing too much on one risk or ignoring cybersecurity until there is a crisis. When you start developing a security plan there are some important questions to ask yourself that form a process called a risk assessment. Answering these questions helps your organization understand the unique threats that you face and allows you to step back and think comprehensively about what you need to protect and from whom you need to protect it. Trained assessors, aided with systems like Internews’ SAFETAG auditing framework, can help lead your organization through such a process. If you can get access to that level of professional expertise it is well worth it, but even if you cannot undergo a full assessment, you should meet with your organization to thoughtfully consider these key questions:
What assets does your organization have and what do you want to protect?

You can start answering these questions by creating a catalogue of all your organization’s assets. Information such as messages, emails, contacts, documents, calendars, and locations are all possible assets. Phones, computers and other devices can be assets. And people, connections, and relationships might be assets too. Make a list of your assets and try to catalogue them by their importance to the organization, where you keep them (perhaps multiple digital or physical places), and what prevents others from accessing, damaging, or disrupting them. Keep in mind that not everything is equally important. If some of the organization’s data is a matter of public record, or information you publish anyway, they are not secrets that you need to protect.

Who are your adversaries and what are their capabilities and motivations?

“Adversary” is a term commonly used in organizational security. In simple terms, adversaries are the actors (individuals or groups) that are interested in targeting your organization, disrupting your work, and gaining access to or destroying your information: the bad guys. Examples of potential adversaries could include financial scammers, competitors, local or national authorities or governments, or ideologically or politically motivated hackers. It is important to make a list of your adversaries and think critically about who might want to negatively impact your organization and staff. While it is easy to envision external actors (like a foreign government or a particular political group) as adversaries, also keep in mind that adversaries can be people that you know, such as disgruntled employees, former staff, and unsupportive family members or partners. Different adversaries pose different threats and have different resources and capabilities to disrupt your operations and gain access to or destroy your information.

For example, governments often have lots of money and powerful capabilities including shutting down the internet or using expensive surveillance technology; mobile networks and internet providers likely have access to call records and browsing histories; skilled hackers on public Wi-Fi networks have the capability to intercept poorly secured communications or financial transactions. You can even become your own adversary by, for example, accidentally deleting important files or sending private messages to the wrong person.

The motives of adversaries are likely to differ along with their capacity, interests, and strategies. Are they interested in discrediting your organization? Perhaps they are intent on silencing your message? Or maybe they see your organization as competition and want to gain an edge? It is important to understand an adversary’s motivation because doing so can help your organization better assess the threats it might pose.
What threats does your organization face? And how likely and high-impact are they?

As you identify possible threats, you are likely to end up with a long list which can be overwhelming. You may feel any efforts would be pointless, or not know where to begin. To help empower your organization to take productive next steps, it is helpful to analyze each threat based upon two factors: the likelihood that the threat will take place; and the impact if it does.

To measure the likelihood of a threat (perhaps “Low, Medium or High” based on if a given event is unlikely to take place, could happen, or frequently happens), you can use information you know about your adversaries’ capacity and motivation, analysis of past security incidents, other similar organizations’ experiences, and of course the presence of any existing mitigation strategies your organization has put in place.

To measure the impact of a threat, think about what your world would look like if the threat actually did occur. Ask questions like “how has the threat harmed us as an organization and as people, physically and mentally?”, “how long-lasting is the effect?”, “does this create other harmful situations?”, and “how does it hamper our ability to achieve our organizational goals now and into the future?” As you answer these questions, consider if the threat is low, medium, or high impact.

Once you have categorized your threats by likelihood and impact, you can begin to make a more informed plan of action. By focusing on those threats that are most likely to happen AND that will have significant negative impacts, you will be channeling your limited resources in the most efficient and effective way possible.

Your goal is always to mitigate as much risk as possible, but no one – not the most well-resourced government or company on earth – can ever fully eliminate risk. And that is okay: you can do a lot to protect yourself, your colleagues, and your organization by taking care of the biggest threats.
Creating your Organizational Cybersecurity Plan

While every organization's security plan will look a little bit different based upon its risk assessment and organizational dynamics, certain core concepts are nearly universal.

This Handbook addresses these essential concepts in a way that will help your organization build a concrete security plan based upon practical solutions and real-world applications.

This Handbook endeavors to provide options and suggestions that are free or very low cost. But keep in mind that the most significant cost associated with implementing an effective security plan will be the time you and your organization need to talk about, learn, and implement your new plan. Given the risks your organization is likely to face, though, this investment will be more than worth it.

In each section, you will find an explanation of a key topic that your organization and its staff should be aware of—what it is and why it is important. Each topic is paired with essential strategies, approaches, and recommended tools to limit your risk and tips and links to additional resources that can help you implement such recommendations across your organization.

Take advantage of other resources that can help you build and implement your plan as well. As a Civil Society organization, the free SOAP (“Securing Organizations with Automated Policymaking”) app can help simplify and automate the creation of your security plan.

Also make use of free training resources like Consumer Reports' Security Planner, the Umbrella App from Security First, the Totem Project from Free Press Unlimited and Greenhost, and the Global Cyber Alliance Cyber Hygiene for Mission Based-Organizations, which include resources on many of the best practices mentioned in this Handbook and links to dozens of training tools to help you implement many core basics.
Building a Culture of Security
Security is all about people, and to protect your organization you need to make sure that everyone involved takes cybersecurity seriously. Changing culture is hard, but a few simple steps and important conversations can go a long way towards creating an atmosphere that will build the resilience of your staff and organization in the face of security threats. One of the simplest but most important steps to take to build this organizational security culture is to communicate about it within your organization, and for leaders to always model good behavior.

Integrate Security into your Regular Operating Structure

As is described in detail in Tactical Tech’s Holistic Security Guide, it is essential to create regular, safe spaces to talk about the different aspects of security.

This way, if team members have concerns around security, they will be less anxious about seeming paranoid or wasteful of other people’s time. Scheduling regular talks about security also normalizes the frequency of interaction and reflection on matters relating to security, so that the issues are not forgotten, and team members are more likely to bring at least a passive awareness of security to their ongoing work. It does not need to be every week, but make it a recurring reminder. These discussions should not only leave space for topics of technical security, but also issues that impact staff comfort and safety such as community conflict, online (and offline) harassment, or issues with using and implementing digital tools. Conversations can even include topics like offline information sharing habits and the ways staff do or do not secure information outside of work. After all, it is important to remember that an organization’s security is only as strong as its weakest link. One way to accomplish consistent engagement is by adding security to the agenda of a regular meeting. You can also rotate the responsibility for organizing and facilitating a discussion on security between members of the organization, which can help develop the idea that security is everyone’s responsibility and not just that of a select few.

As you begin to formalize discussion about security, staff will likely feel more comfortable discussing these important issues amongst themselves as well in less formal settings. It is also important to incorporate security elements into the normal functioning of the organization, such as during employee onboarding – and thinking about cutting off access for off-boarding. Security should not be some “extra thing” to worry about, but rather an integral part of your strategy and operations.

Remember that all security plans should be considered living documents, and should be re-evaluated and discussed regularly, especially when new employees or volunteers join the organization or your security context changes.

Plan to revisit your strategy and make updates annually, or if there are major changes in strategy, tools, or the threats you face.
Get Organizational Buy-In

Part of a successful security culture is also ensuring buy-in across your organization to your security plan.

Critically this must include strong, vocal support and guidance from organizational leadership who will in many cases be the ones making the final decision to allocate time, resources, and energy towards developing and implementing an effective security plan. If they do not take it seriously, no one else will. To achieve this buy-in across the organization, think carefully about when and how to introduce your plan, do so in a clear manner, make sure leadership reinforces the messages, and walk everyone through all the elements and steps of the plan so that there is no mystery or confusion about what you are trying to achieve. Many donors now require grantees to maintain strong security, so stressing this to staff can be a good way to create deeper organizational buy-in as well. When talking about security, avoid scare tactics. Sometimes the threats that your organization and staff face can be scary, but try to focus on sharing facts and creating a calm space for questions and concerns. Making the dangers seem too threatening can cause people to dismiss you as sensationalist or simply give up, thinking nothing they do matters – and nothing could be further from the truth.

Establish a Training Plan

Once you have developed and committed to a plan, think about how you will train all staff (and volunteers) on these new best practices.

Requiring regular training - and making attendance of training mandatory and an evaluation point for staff performance reviews - can be a helpful tactic. Avoid creating harsh, negative consequences for staff who struggle with security concepts. Keep in mind that certain staff may adapt to and learn about technology differently than others based upon varying levels of familiarity with digital tools and the internet. A fear of failure only further disincentivizes staff from reporting problems or seeking help. However, creating positive accountability and rewards for successful training and adoption of policies can help incentivize improvement across the organization. You may find additional valuable support through local or international digital security training networks and free training resources such as the Umbrella App from Security First, the Totem Project from Free Press Unlimited and Greenhost, and the Global Cyber Alliance Learning Portal.
Building a Culture of Security

- Schedule regular conversations and trainings about security and your security plan.
- Get everyone involved - distribute responsibility for implementing your security plan across the entire organization.
- Ensure leadership models good security behavior and a commitment to your plan.
- Avoid fear tactics or punishment - reward improvement and create a comfortable space for staff to report problems and seek help.
- Update your security plan annually or after major changes in the organization.
A Strong Foundation: Securing Accounts and Devices
Why the focus on accounts and devices? Because they form the foundation of everything that your organization does digitally.

You almost certainly access sensitive information, communicate internally and externally, and save private information on them. If they are not secure, then all these things and more can be put at risk. For example, if hackers are watching your keystrokes or listening to your microphone, your conversations will be captured no matter how secure your messaging apps. Or if an adversary gains access to your organization’s social media accounts, they could easily harm your reputation and credibility, undermining the success of your work. So it is essential as an organization to ensure that everyone is taking some simple but effective steps to keep their devices and accounts secure. It is important to note that these recommendations include personal accounts and devices as well, as those are often easy targets for adversaries. Hackers will gladly go after the easiest target and break into a personal account or home computer if your team is using them to communicate and access important information.

Secure Accounts and Civil Society

The widely publicized SolarWinds hack revealed in late 2020, which compromised over 250 organizations, including most United States government departments, technology vendors like Microsoft and Cisco, and NGOs was partly a result of hackers guessing poor passwords that were used on important administrator accounts. Overall, about 80% of all hacking-related breaches occur because of weak or reused passwords.

With the increasing prevalence of password breaches like this and easier access for all kinds of adversaries to sophisticated password hacking tools, two factor authentication is a security must-have for civil society organizations. One example of civil society accounts under attack was reported by Facebook in 2020.

According to their report, hacking groups in Bangladesh targeted the accounts of local civil society activists, journalists, and religious minorities. Unfortunately the hackers were able to successfully compromise some of these Facebook accounts, including an administrator for a local group’s Facebook Page. With access to the admin account, the hackers removed the remaining admins and took over and disabled the page, preventing the group from sharing key information and communicating to their audience. Facebook’s investigation discovered that the accounts were likely compromised through various means, including abuse of its account recovery process. If all the accounts had been using two-factor authentication, such attacks would have been much more difficult for the hackers to effectively execute.
Secure Accounts: Passwords and Two Factor Authentication

In today's world it is likely that your organization and its staff have dozens if not hundreds of accounts that, if breached, could expose sensitive information or even get at-risk individuals hurt.

Think about the different accounts individual staff and the organization as a whole may have: email, chat apps, social media, online banking, cloud data storage...and clothing stores, the local pizza place, newspapers, and any other website or app that you log into. Good security in today's world requires a diligent approach to protecting all of these accounts from attacks. That starts with ensuring good password hygiene and the use of two-factor authentication throughout the entire organization.

WHAT MAKES A GOOD PASSWORD?

There are three keys to a good, strong password: length, randomness, and uniqueness.

LENGTH	The longer the password is, the harder it is for an adversary to guess it. Most password hacks are done by computer programs these days, and it does not take those nefarious programs long to crack a short password. As a result, it is essential that your passwords are at minimum 16 characters, or at least 5 words, and preferably longer.
RANDOMNESS	Even if a password is long, it is not very good if it is something that an adversary can easily guess about you. Avoid including information like your birthday, hometown, favorite activities, or other facts that someone could find out about you from a quick internet search.
UNIQUENESS	Perhaps the most common password “worst practice” is using the same password for multiple sites. Repeating passwords is a big problem because it means that when just one of those accounts is compromised, any other accounts using that same password are vulnerable too. If you use the same passphrase on multiple sites, it can greatly increase the impact of one mistake or data breach. While you may not care about your password for the local library, if it is hacked and you use the same password on a more sensitive account, important information could be stolen.
A Strong Foundation: Securing Accounts and Devices

USE A PASSWORD MANAGER TO HELP

So you know it is important for everyone in the organization to use a long, random, and different password for each of their personal and organizational accounts, but how do you actually do that? Memorizing a good password for dozens (if not hundreds) of accounts is impossible, so everyone has to cheat. The wrong way to do it is to reuse passwords. Luckily, we can turn to digital password managers to make our lives much easier (and our password practices much safer) instead. These applications, many of which can be accessed via computer or mobile device, can create, store, and manage passwords for you and your entire organization. Adopting a secure password manager means that you will only ever have to remember one very strong, long password called the primary password (historically referred to as a “master” password), while being able to get the security benefits of using good, unique passwords across all of your accounts. You will use this primary password (and possibly a second factor of authentication (2FA), which will be discussed in the next section) to open your password manager and unlock access to all your other passwords. Password managers can also be shared across multiple accounts to facilitate secure password sharing throughout the organization.

Why do we need to use something new? Can we not just write them down on paper or in a spreadsheet on the computer?

Unfortunately, there are many common approaches to managing passwords that are not secure. Storing passwords on sheets of paper (unless you keep them locked away in a safe) can expose them to physical theft, prying eyes, and easy loss and damage. Saving passwords on a document on your computer makes it much easier for a hacker to gain access – or for someone who steals your computer to not only have your device but also access to all of your accounts. Using a good password manager is just as easy as that document, but far more secure.

Why should we trust a password manager?

Quality password managers go to extraordinary lengths (and employ excellent security teams) to keep their systems secure. Good password management apps (a few are recommended below) are also set up so that they do not have the ability to “unlock” your accounts. This means that in most cases, even if they were hacked or legally compelled to hand over information, they would not be able to lose or give up your passwords. It is also important to remember that it is infinitely more likely that an adversary guesses one of your weak or repeated passwords, or finds one in a public data breach, than that a good password manager would have its security systems broken. It is important to be skeptical, and you definitely should not blindly trust all software and applications, but reputable password managers have all the right incentives to do the right thing.

One easy way to achieve these goals of length, randomness, and uniqueness is picking three or four common but random words. For example, your password could be “flower lamp green bear” which is easy to remember but hard to guess. You can take a look at [this website](#) from Better Buys to see an estimate of just how quickly bad passwords can be cracked.
Instead of using your browser (such as Chrome, shown at left) to save your passwords, use a dedicated Password Manager (like Bitwarden, shown at right). Password Managers have features that make life both more secure and convenient for your organization.

What about storing passwords in the browser?

Saving passwords in your browser is not the same as using a secure password manager. In short, you should not use Chrome, Firefox, Safari or any other browser as your password manager. Although definitely an improvement over writing them on paper or saving them in a spreadsheet, the basic password-saving features of your web browser leave something to be desired from a security perspective. These shortcomings also rob you of much of the convenience that a good password manager brings to your organization. Losing this convenience makes it more likely that people across your organization will continue poor password creation and sharing practices.

For example, unlike dedicated password managers, browsers’ built-in “save this password” or “remember this password” features do not provide simple mobile compatibility, cross-browser functionality, and strong password generation and auditing tools. These features are a big part of what makes a dedicated password manager so useful and beneficial to your organization’s security. Password managers also include organization-specific features (such as password sharing) that provide not just individual security value, but value to your organization as a whole. If you have been saving passwords with your browser (intentionally or unintentionally), take a moment to remove them.

What password manager should we use?

Many good password management tools exist that can be set-up in less than thirty minutes. If you are looking for a trusted online option for your organization that people can access from multiple devices at any time, 1Password (starts at $2.99 per user per month) or the free, open-source BitWarden are both well supported and recommended. An online option like BitWarden can be great for both security and convenience. BitWarden, for example, will help you create strong unique passwords and access passwords from multiple devices through browser...
You can strengthen your entire organization’s password practices and ensure all individual staff have access to (and use) a password manager by implementing one across the entire organization. Instead of having each individual staff member set up their own, consider investing in a “team” or “business” plan. For example, BitWarden’s “teams organization” plan costs $3 per user per month. With it (or other team plans from password managers like 1Password), you have the ability to manage all shared passwords across the organization. The features of an organization-wide password manager not only provide greater security but also convenience for staff. You can securely share credentials within the password manager itself to different user accounts. And BitWarden, for example, also provides a convenient end-to-end encrypted text and file sharing feature called “BitWarden Send” within its team plan. Both these features give your organization more control over who can see and share which passwords, and provides a more secure option for sharing credentials for team-wide or group accounts. If you do set up an organization-wide password manager, be sure that someone is specifically in charge of removing staff accounts and changing any shared passwords when someone leaves the team.

What if someone forgets their primary password?

It is essential to remember your primary password. Good password management systems like the ones recommended above will not remember your primary password for you or allow you to reset it directly via email the way you might be able to for websites. This is a good security feature, but also makes it essential to commit your primary password to memory when you first set up your password manager. To help with this, consider setting up a daily reminder to recall your primary password when you first create a password manager account.

Using a password manager for your Organization

You can strengthen your entire organization’s password practices and ensure all individual staff have access to (and use) a password manager by implementing one across the entire organization. Instead of having each individual staff member set up their own, consider investing in a “team” or “business” plan. For example, BitWarden’s “teams organization” plan costs $3 per user per month. With it (or other team plans from password managers like 1Password), you have the ability to manage all shared passwords across the organization. The features of an organization-wide password manager not only provide greater security but also convenience for staff.
WHAT IS TWO-FACTOR AUTHENTICATION?

However good your password hygiene, it is all too common for hackers to get around passwords. Keeping your accounts secure from some common threat actors in today's world requires another layer of protection. That is where multi-factor or two-factor authentication comes into play – referred to as 2FA. There are many great guides and resources explaining two-factor authentication, including Martin Shelton's Two Factor Authentication for Beginners article and the Center for Democracy and Technology's Election Cybersecurity 101 Field Guide. This section borrows heavily from both of those resources to help explain why 2FA is so important to implement across your organization. In short, 2FA strengthens account security by requiring a second piece of information – something more than just a password – to gain access. The second piece of information is usually something that you have, like a code from an app on your phone or a physical token or key. This second piece of information acts as a second layer of defense. If a hacker steals your password or gains access to it via a dump of passwords from a major data breach, effective 2FA can keep them from accessing your account (and therefore away from private and sensitive information). Ensuring that everyone in the organization puts 2FA in place on their accounts is critically important.

HOW CAN WE SET UP 2FA?

There are three common methods for 2FA: security keys, authentication apps, and one-time SMS codes.

Security Keys

Security keys are the best option, in part because they are almost completely phishing-proof. These “keys” are hardware tokens (think mini USB drives) that can attach to your keychain (or stay in your computer) for easy access and safe keeping. When it is time to use the key to unlock a given account, you simply insert it into your device and physically tap it when prompted during login. There are a wide range of models that you can purchase online ($20-50), including Yubikeys or Google's Titan keys. The New York Times' Wirecutter has a helpful guide with some recommendations for which keys to purchase. Keep in mind that the same security key can be used for as many accounts as you would like. While security keys are on the expensive side for many organizations, initiatives such as Google's Advanced Protection Program or Microsoft's AccountGuard provide these keys for free to some qualifying at-risk groups. Contact the people who gave you the Handbook to see if they can connect you to such programs or contact cyberhandbook@ndi.org.

A Strong Foundation: Securing Accounts and Devices

Communicating and Storing Data Securely

Staying Safe on the Internet

Protecting Physical Security

What To Do When Things Go Wrong
Authentication Apps

The second-best option for 2FA are authentication apps. These services allow you to receive a temporary two-factor login code through a mobile app or push notification on your smartphone. Some popular and trusted options include Google Authenticator, Authy, and Duo Mobile. Authenticator apps are also great because they work when you do not have access to your cellular network and are free to use for individuals. However, authenticator apps are more susceptible to phishing than security keys because users can be tricked into entering security codes from an authentication app into a fake website. Take care to only enter login codes on legitimate websites. And do not “accept” login push notifications unless you are sure that you are the one who made the login request. It is also essential when using an authenticator app to be prepared with backup codes (discussed below) in case your phone is lost or stolen.

Codes Via SMS

The least secure but unfortunately still most common form of 2FA are codes sent via SMS. Because SMS can be intercepted and phone numbers can be spoofed or hacked via your mobile carrier, SMS leaves a lot to be desired as a method for requesting 2FA codes. It is better than only using a password, but authenticator apps or a physical security key are recommended when at all possible. A determined adversary can get access to SMS 2FA codes, usually just by calling the phone company and swapping your SIM card. When you are ready to start enabling 2FA for all of your organization’s various accounts, make use of this website (https://2fa.directory) to quickly look up information and instructions for specific services (like Gmail, Office 365, Facebook, Twitter, etc.) and to see which services allow for which types of 2FA.

2FA and Civil Society

According to a recent Amnesty International report, hackers targeting human rights defenders in Uzbekistan used phishing attacks to trick users into sharing passwords “and” two factor authentication codes to their email accounts via fake Gmail login pages. Such attacks are an increasingly common way to “bypass” two factor authentication. It is important - even with 2FA in place - to be careful about where you type your codes. Better yet, you can eliminate this risk by adopting physical security keys.
Security Keys in the Real World

By providing physical security keys for two factor authentication to all 85,000+ of its employees, Google (a very high risk, highly targeted organization) effectively eliminated any successful phishing attacks against the organization. This case shows just how effective security keys can be for even the most at-risk organizations.

WHAT IF SOMEONE LOSES A 2FA DEVICE?

If using a security key, treat it the same way you would treat a key for your house or apartment, if you have one. In short, do not lose it. Just like your house keys though, it is always a good idea to have a backup key registered to your account that stays locked away in a safe place (like a safe at home or a safe deposit box) just in case of loss or theft. Alternatively you should (for accounts that allow it) create backup codes. You should keep these codes saved in a very secure place, like your password manager or a physical safe. Such backup codes can be generated within most sites’ 2FA settings (the same place where you enable 2FA in the first place), and can act as a backup key in case of emergency. The most common 2FA mishap occurs when people replace or lose phones which they use for authentication apps. If using Google Authenticator, you are out of luck if your phone is stolen, unless you save the backup codes that are generated at the time you connect an account to Google Authenticator. Therefore, if you are using Google Authenticator as a 2FA app, be sure to save the backup codes for all accounts that you connect in a secure place. If using Authy or Duo, both apps have built-in backup features with strong security settings that you can enable. If you choose either of those apps, you can configure those backup options in case of device breakage, loss, or theft. See Authy’s instructions here, and Duo’s here. Be sure that everyone in your organization is aware of these steps as they start to enable 2FA across all of their accounts.

Enforcing 2FA across your Organization

If your organization provides email accounts to all staff through Google Workspace (formerly known as GSuite) or Microsoft 365 using your own domain (for example, @ndi.org), you can enforce 2FA and strong security settings for all accounts. Such enforcement not only helps protect these accounts, but it also acts as a way to introduce and normalize 2FA to your staff so that they are more comfortable with adopting it for personal accounts as well. As a Google Workspace administrator, you can follow these instructions to enforce 2FA for your domain. You can do something similar in Microsoft 365 following these steps as a domain admin.

Consider also enrolling your organization’s accounts in the Advanced Protection Program (Google) or AccountGuard (Microsoft) to enforce additional security controls and require physical security keys for two factor authentication.
Secure Accounts

- Require strong passwords for all organizational accounts; encourage the same for staff and volunteer’s personal accounts.

- Implement a trusted password manager for the organization (and encourage use in staff’s personal lives as well).
 - Require a strong primary password and 2FA for all password manager accounts.
 - Remind everyone to log out of a password manager on shared devices or when at heightened risk of device theft or confiscation.

- Change shared passwords when staff leave the organization.

- Only share passwords securely, such as through your organization’s password manager or end-to-end encrypted apps.

- Require 2FA on all organizational accounts, and encourage staff to set-up 2FA on all personal accounts as well.
 - If possible, provide physical security keys to all staff.
 - If security keys are not in your budget, encourage the use of authenticator apps instead of SMS or phone calls for 2FA.

- Hold regular training to ensure staff are aware of password and 2FA best practices, including what makes a strong password and the importance of never reusing passwords, only accepting legitimate 2FA requests, and generating backup 2FA codes.
In addition to accounts, it is essential to keep all devices – computers, phones, USBs, external hard drives, etc. – well protected.

Such protection starts with being careful about what type of devices your organization and staff purchase and use. Any vendors or manufacturers that you select should have a demonstrated track record of adhering to global standards regarding the secure development of hardware devices (like phones and computers). Any devices you procure should be manufactured by trusted companies that do not have an incentive to hand over data and information to a potential adversary. It is important to note that the Chinese government requires Chinese companies to provide data to the central government. So despite the ubiquitous and inexpensive presence of smartphones like Huawei or ZTE, they should be avoided. Although the cost of cheap hardware can be very attractive to an organization, the potential security risks for organizations advocating for democracy, human rights, or accountability should steer you towards other device options, as this access to data has helped facilitate the Chinese government and other governments’ targeting of certain individuals and communities. Your adversaries can compromise the security of your devices - and everything you do from those devices - by either gaining physical access or "remote" access to your device.

Some of the world’s most advanced malware has been developed and deployed across the globe to target civil society organizations and human rights defenders. In India, for example, Amnesty International reported that at least nine human rights defenders were targeted in 2020 with spyware (a type of malicious software) on their mobile devices and computers. The spyware was delivered through a series of phishing emails with links to infected files shared through Firefox Send (a since discontinued file-sharing program). For those targets who opened the files, their devices became infected with software that recorded audio, intercepted keystrokes and messages, and in effect put them under full surveillance of the attackers. Such attacks, which are frequently aimed at civil society groups and their individual staff, are an unfortunately common way for attackers to gain “remote” access to a device.
PHYSICAL DEVICE ACCESS THROUGH LOSS OR THEFT

To prevent physical compromise, it is essential to keep your devices physically secure. In short, do not make it easy for an adversary to steal or even temporarily take your device from you. Keep devices locked away if left at home or in an office. Or if you think it is safer, keep them on your person. This of course means that part of device security is the physical security of your work spaces (whether in an office setting or at home). You may need to install strong locks, security cameras, or other monitoring systems - especially if your organization is at high risk. Remind staff to treat devices the same way they would treat a large stack of cash - do not leave them lying around unattended or unprotected.

What if a device is stolen?

To limit the impact if someone does manage to steal a device – or even if they just gain access to it for a short period of time – be sure to mandate the use of strong passwords or passcodes on everyone’s computers and phones. The same password tips from the Passwords section of this Handbook apply to a good password for a computer or laptop. When it comes to locking your phone, use codes that are at least six to eight digits, and avoid using “swipe patterns” to unlock the screen. For additional tips on screenlocks, check out Tactical Tech's Data Detox Kit. Using good device passwords makes it much harder for an adversary to quickly access information on your device in the case of theft or confiscation. With a strong passcode in place, activating Face ID or fingerprint unlock can be fine, but be sure to deactivate it (while leaving your strong passcode in place) before any high-risk activities such as protests or border crossings if you and your staff are concerned about device confiscation from authorities. If any devices issued by the organization have a “Find my Device” feature, such as iPhone’s Find My iPhone and Android’s Find My Device, consider requiring staff to activate it. Encourage staff to use these features on personal devices as well. With these features turned on, the device owner (or a trusted contact) can locate the device or remotely wipe its contents should it be stolen, lost, or confiscated. For iPhones, you can also configure the device to auto-wipe after several failed login attempts. Such device management features become critically important for an organization when a device with sensitive information is lost or gets into the wrong hands.

What about device encryption?

It is important to use encryption, scrambling data so that it is unreadable and unusable, on all devices, especially computers and smartphones. You should set up all devices across your organization with something called full-disk encryption if possible. Full-disk encryption means that the entirety of a device is encrypted so that an adversary, if they were to physically steal it, would be unable to extract a device’s contents without knowing the password or key you used to encrypt it. Many modern smartphones and computers offer full-disk encryption. Apple devices like iPhones and iPads, quite conveniently, turn on full-disk encryption when you set a normal device passcode. Apple computers using macOS provide a feature called FileVault that you can turn on for full-disk encryption. Windows computers running pro, enterprise, or education licenses offer a feature called BitLocker that you can turn on for full-disk encryption. You can turn on BitLocker by following these instructions from Microsoft, which may have to first be enabled by your organization's administrator. If staff only have a home license for their Windows computers, BitLocker is not available. However they can still turn on full-disk encryption by going to ‘Update & Security’ > ‘Device encryption’ under the Windows OS settings.

Android devices, as of version 9.0 and later, ship with file-based encryption turn on by default. Android's file-based encryption operates differently from full-disk encryption but still provides strong security. If you are using a relatively new Android phone and have set a passcode, file-based encryption should be enabled. However, it is a good idea to check your settings just to make sure, especially if your phone is more than a couple of years old. To check, go to Settings > Security on your Android device. Within the security settings you should see a subsection for ‘encryption’ or ‘encryption and credentials’, which will indicate if your phone is encrypted and, if not, allow you to turn encryption on.

For computers (whether Windows or Mac), it is particularly important to store any encryption keys (referred to as recovery keys) in a safe place. These "recovery keys" are in most cases essentially long passwords or passphrases. In case you forget your normal device password or something unexpected happens (such as device failure), recovery keys are the only way to recover your encrypted data and, if necessary, move it to a new device. So when turning on full-disk encryption, be sure to save these keys or passwords in a safe place, like a secured cloud account or your organization's password manager.
REMOTE DEVICE ACCESS – ALSO KNOWN AS HACKING

In addition to keeping devices physically secure, it is important to keep them free from malware. Tactical Tech’s Security-in-a-Box gives a helpful description of what malware is and why it is important to avoid, which is adapted slightly in the rest of this section.

Understanding and avoiding malware

There are many ways to classify malware (which is a term meaning malicious software). Viruses, spyware, worms, trojans, rootkits, ransomware and cryptojackers are all types of malware. Some types of malware spread over the internet through email, text messages, malicious web pages, and other means. Some spread through devices like USB memory sticks that are used to exchange and steal data. And, while some malware requires an unsuspecting target to make a mistake, others can silently infect vulnerable systems without you doing anything wrong at all.

In addition to general malware (which is released widely and aimed at the general public), targeted malware is typically used to interfere with or spy on a particular individual, organization, or network. Regular criminals use these techniques, but so do military and intelligence services, terrorists, online harassers, abusive spouses, and shady political actors.

Whatever they are called, however they are distributed, malware can ruin computers, steal and destroy data, bankrupt organizations, invade privacy, and put users at risk. In short, malware is really dangerous. However, there are some simple steps that your organization can take to protect itself against this common threat.

Will an anti-malware tool protect us?

Anti-malware tools are unfortunately not a complete solution. But it is a very good idea to use some basic, free tools as a baseline. Malware changes so fast, with new risks in the real world so frequently, that relying on any such tool cannot be your only defense.

If you are using Windows you should have a look at the built-in Windows Defender. Macs and Linux computers do not come with built-in anti-malware software, nor do Android and iOS devices. You can install a reputable, free-to-use tool like Bitdefender or Malwarebytes for those devices (and Windows computers as well). But do not rely on that as your only line of defense as they will certainly miss some of the most targeted, dangerous new attacks.

Also be very careful to only download reputable anti-malware or anti-virus tools from legitimate sources (such as the websites linked above). Unfortunately, many fake or compromised versions of anti-malware tools exist that do much more harm than good.

To the extent that you do use Bitdefender or another anti-malware tool across your organization, be sure not to run two of them at the same time. Many of them will identify the behaviour of another anti-malware program as suspicious and stop it from running, leaving both malfunctioning. Bitdefender or other reputable anti-malware programs can be updated for free, and the built-in Windows Defender receives updates along with your computer. Ensure that your anti-malware software updates itself regularly (some trial versions of commercial software that ship with a computer will be disabled after the trial period expires, leaving it more dangerous than helpful.)

New malware is written and distributed every day, and your computer will quickly become even more vulnerable if you do not keep up with new malware definitions and anti-malware techniques. If possible, you should configure your software to install updates automatically. If your anti-malware tool has an optional “always on” feature, you should enable it, and consider occasionally scanning all of the files on your computer.

Keep devices up-to-date

Updates are essential. Use the latest version of whatever operating system runs on a device (Windows, Mac, Android, iOS, etc), and keep that operating system up-to-date. Keep other software, browser, and any browser plugins up-to-date as well. Install updates as soon as they become available, ideally by turning on automatic updates. The more up-to-date a device’s operating system, the less vulnerabilities you have. Think of updates kind of like putting a band-aid on an open cut. It seals up a vulnerability and greatly reduces the chance that you will get infected. Also uninstall software that you no longer use. Outdated software often has security issues, and you may have installed a tool that is no longer being updated by the developer, leaving it more vulnerable to hackers.
Malware in the Real World: Updates are Essential

In 2017, the WannaCry ransomware attacks infected millions of devices around the world, shutting down hospitals, government entities, large and small organizations and businesses in dozens of countries. Why was the attack so effective? Because of out-of-date, "unpatched" Windows operating systems, many of which were initially pirated. Much of the damage – human and financial – could have been avoided with better automated updating practices and the use of legitimate operating systems.

Be smart while browsing

Never accept and run applications that come from websites you do not know and trust. Rather than accepting an "update" offered in a pop-up browser window, for example, check for updates on the relevant application's official website. As discussed in the phishing section of the Handbook, it is essential to stay alert when browsing websites. Check the destination of a link (by hovering over it) before you click, and glance at the website address after you follow a link and make sure it looks appropriate before entering sensitive information like your password. Do not click through error messages or warnings, and watch for browser windows that appear automatically and read them carefully instead of just clicking Yes or OK.

What about smartphones?

As with computers, keep your phone's operating system and applications up to date, and turn on automatic updates. Install only from official or trusted sources like Google's Play Store and Apple's App Store (or F-droid, a free, open-source app store for Android). Apps can have malware inserted into them and still appear to work normally, so you will not always know if one is malicious. Be sure that you are downloading the legitimate version of an app as well. Especially on Androids, "fake" versions of popular applications exist. So be sure an app is created by the proper company or developer, has good reviews, and has the expected number of downloads (for example, a fake version of WhatsApp might only have a few thousand downloads, but the real version has over 5 billion). Pay attention to the permissions that your apps request. If they seem excessive (like a calculator requiring access to your camera or Angry Birds asking for access to your location, for example) deny the request or uninstall the app. Uninstalling apps that you no longer use can also help protect your smartphone or tablet. Developers sometimes sell ownership of their apps to other people. These new owners may try to make money by adding malicious code.

Be careful about USBs

Be cautious when opening files that are sent to you as attachments, through download links, or by any other means. Also think twice before inserting removable media like USB sticks, flash memory cards, DVDs and CDs into your computer, as they can be a vector for malware. USBs that have been shared for a while are very likely to have viruses on them. For alternative options to share files securely across your organization, take a look at the file sharing section of the Handbook.

Be cautious as well about what other devices you connect to through Bluetooth. It is fine to sync up your phone or computer to a known and trusted Bluetooth speaker to play your favorite music, but be careful about linking to or accepting requests from any devices that you do not recognize. Only allow connections to trusted devices and remember to turn off Bluetooth when it is not in use.
Malware in the Real World: Malicious Mobile Apps

Hackers in multiple countries have been using fake applications in the Google Play store to distribute malware for years. One particular case targeted at users in Vietnam came to light in April 2020. This spying campaign used fake applications, which supposedly helped users find nearby pubs or look up information about local churches. Once installed by unwitting Android users, the malicious applications collected call logs, location data, and information about contacts and text messages. This is just one of many reasons to be careful about what apps you download to your devices.

Save money and increase device security with Tails for your Organization

One very secure option which requires a bit of technical skill to set up is the Tails operating system. This portable operating system is free to use and you can boot it up straight from a USB, bypassing the need to rely on licensed Windows or Mac operating systems. Tails is also a good option for those at extremely high risk, as it incorporates a wide range of privacy-enhancing features. These features include the integration of Tor (discussed below) to secure your web traffic, and the complete erasure of memory every time you shut down the operating system. These features essentially allow you to start with a clean slate each time you restart your computer. Tails also has a "persistence mode", which allows you to save important files and settings across multiple sessions if desired.

Another option for a free, secure operating system is Qubes OS. While not the simplest option for non-technical users, Qubes is designed to limit the threat of malware and is another option to consider for more advanced and high-risk users in your organization, especially if licensing costs are a challenge.
What if we cannot afford legal software?

It can be expensive to purchase licensed versions of popular software like Microsoft Office (Word, Powerpoint, Excel) for your entire organization, but a limited budget is not an excuse to download pirated versions of software or fail to keep them up-to-date. This is not a matter of morality – it is a matter of security. Pirated software frequently is filled with malware, and often cannot be patched for security holes. If you cannot afford the software your organization needs, there is a wide range of great free, open source software like LibreOffice (a replacement for standard Microsoft Office apps) or GIMP (a replacement for Photoshop) that can serve your needs. Also consider registering through Tech Soup, an organization that offers steep discounts on popular software for nonprofits. Even if you can afford legitimate software and apps, your device is still at risk if the underlying operating system is not legitimate.

So if your organization cannot afford Windows licenses, consider cheaper alternatives like Chromebooks, which are a great, easy-to-secure option if your organization works mostly in the cloud. If you are using Google Docs or Microsoft 365, you do not need many desktop applications at all - the free in-browser document and spreadsheet editors are more than enough for almost any use. Another option, if you have staff with the technical skills, is to install a free Linux-based operating system (an open source alternative to Windows and Mac operating systems) on each computer. One popular, fairly user-friendly Linux option is Ubuntu. Regardless of what operating system you choose, make sure that someone in the organization is responsible for regularly checking in with staff to ensure they have applied the latest updates.

Keeping Devices Secure

- **Train staff on the risks of malware and the best practices to avoid it.**
 - Provide policies about connecting external devices, clicking on links, downloading files and apps, and checking software and app permissions.

- **Mandate that devices, software, and applications are kept fully updated.**
 - Turn on automatic updates where possible.

- **Ensure all devices are using licensed software.**
 - If the cost is prohibitive, switch to a no-cost alternative.

- **Require password protection of all organizational devices, including personal mobile devices which are used for work-related communications.**

- **Enable full-disk encryption on devices.**

- **Frequently remind staff to keep their devices physically secure - and manage your office security with appropriate locks and ways to secure computers.**

- **Do not share files using USBs or plug USBs into your computers.**
 - Use alternative secure file sharing options instead.
Phishing: A Common Threat to Devices and Accounts

Phishing is the most common and effective attack on organizations around the world. The technique is used by the most sophisticated nation-state militaries as well as petty fraudsters.

Phishing, put simply, is where an adversary attempts to trick you into sharing information that could be used against you or your organization. Phishing can happen via emails, text messages/SMS (often referred to as SMS phishing or “smishing”), messaging apps like WhatsApp, social media messages or posts, or phone calls (often referred to as voice phishing or “vishing”). The phishing messages may try to get you to type sensitive information (like passwords) into a fake website in order to gain access to an account, ask you to share private information (like a credit card number) via voice or text, or convince you to download malware (malicious software) that can infect your device. For a non-technical example, every day millions of people get fake automated phone calls telling them that their bank account was compromised or that their identity has been stolen - all of which are designed to trick the unaware into sharing sensitive information.

HOW CAN WE IDENTIFY PHISHING?

Phishing can sound sinister and impossible to catch, but there are some simple steps that everyone in your organization can take to protect against the majority of attacks. The following phishing defense tips are modified and extended from the in-depth phishing guide developed by the The Freedom of the Press Foundation, and should be shared with your organization (and other contacts) and integrated into your security plan:
Sometimes, the “from” field is lying to you

Be aware that the “from” field in your emails can be faked or forged to trick you. It is common for phishers to set up an email address that looks a lot like a legitimate one that you are familiar with, misspelled just a bit to trick you. For example, you may receive an email from someone with the address “john@google.com” as opposed to “john@google.com”. Notice the extra Os in google. You may also know someone with an email address “john@gmail.com”, but receive a phishing email from an impersonator who set up “johm@gmail.com” - the only difference being a subtle change of letters at the end. Always be sure to double-check that you know the sending address of an email before proceeding. A similar concept applies to phishing via text, calls, or messaging apps. If you get a message from an unknown number, think twice before responding to or interacting with the message.

Sophisticated, personalized phishing attacks target civil society groups around the world every day.

One example of such an attack is highlighted in The Citizen Lab’s 2018 report, Spying on a Budget: Inside a Phishing Operation with Targets in the Tibetan Community. This very inexpensive and simple - yet incredibly effective - phishing attack was aimed at Tibetan human rights defenders and other activists. The attack started with a phishing email (shown at left) from a standard Gmail address that contained only an image file link. When clicked, the link brought the target to a fake Google email login page (shown in middle) that was used to steal account credentials. If victims provided credentials to the fake page, their accounts would be easily compromised. After providing their username and password to the fake site, victims would be redirected to an image (shown at right) that shows delegates in a Tibetan meeting. The image was included as a decoy to make the phishing targets believe they had actually signed in to their real Google account and reduce any possible suspicions about the true malicious nature of the email.
Beware of attachments

Attachments can carry malware and viruses, and commonly accompany phishing emails. The best way to avoid malware from attachments is to never download them. As a rule, do not open any attachments immediately, especially if they come from people you do not know. If possible, ask the person that sent you the document to copy-paste the text in an email or to share the document via a service like Google Drive or Microsoft OneDrive, which have built-in virus scanning of most documents uploaded to their platforms. Build an organizational culture where attachments are discouraged. If you absolutely have to open the attachment, it should only be opened in a safe environment (see advanced section below) where potential malware cannot be deployed to your device.

If you use Gmail and receive an attachment in an email, instead of downloading it and opening it on your computer, simply click on the attached file and read it in “preview” within your browser. This step allows you to view the text and contents of a file without downloading it or allowing it to load possible malware onto your computer. This works well for word documents, pdfs, and even slideshow presentations. If you need to edit the document, consider opening the file in a cloud program like Google Drive and converting the file to a Google Doc or Google Slides.

If you use Outlook, you can similarly preview attachments without downloading them from the Outlook web client. If you need to edit the attachment, consider opening it in OneDrive if that’s available to you. If you use Yahoo Mail, the same concept applies. Do not download attachments, but rather preview them from within the web browser.

Regardless of what tools you have at your disposal, the best approach is simply to never download attachments that you do not know or trust. And regardless of how important an attachment might seem, never open something with a file type you do not recognize or have no intention of ever using.

Phishing defense for your Organization

If your organization uses enterprise Microsoft 365 for email and other applications, your domain administrator should configure the Safe Attachments policy to protect against dangerous attachments. If using enterprise Google Workspace (formerly known as GSuite), there is a similarly effective option that your administrator should configure called Google Security Sandbox. More advanced individual users can consider setting up sophisticated sandbox programs, such as DangerZone or, for those with the Pro or Enterprise version of Windows 10, Windows Sandbox. Another advanced option to consider implementing across your organization is a secure domain name system (DNS) filtering service. Organizations can use this technology to block staff from accidentally accessing or interacting with malicious content, providing an additional layer of protection against phishing. Although historically such technology required a dedicated team of internal IT staff, new services like Cloudflare’s Gateway provide such capabilities to less technically sophisticated organizations without requiring large sums of money (Gateway, for example, is free for up to 50 users). Additional free tools, including Quad9 from the Global Cyber Alliance Toolkit, will help block you from accessing known sites that have viruses or other malware and can be implemented in less than five minutes.
Click with caution

Be skeptical of links in emails or other text messages. Links can be disguised to download malicious files or take you to fake sites that might ask you to provide passwords or other sensitive information. When on a computer, there is a simple trick for making sure a link in an email or message will send you to where it is supposed to: use your mouse to hover over any link before clicking on it, and look in the bottom of your browser window to see what the actual URL is (see image below).

It is more difficult to check links in an email on a mobile device without accidentally clicking on them - so be careful. But you can check the destination of a link on most smartphones by long-pressing (holding down) on a link until the full URL pops up.

In phishing via SMS and messaging apps, shortened links are a very common practice used to disguise the destination of a URL. If you see a short link (like bit.ly or tinyurl.com for example) instead of the full URL, do not click on it. If the link is important, copy it into a URL expander, such as https://www.expandurl.net/, to see the actual destination of a shortened URL. Furthermore, do not click on links to websites you are unfamiliar with. If in doubt, perform a search for the site, with the site name in quotation marks (example: "www.badwebsite.com") to see if it is a legitimate website. You can also run potentially suspicious links through VirusTotal's URL scanner. This is not 100% accurate, but it is a good precaution to take.

Finally, if you click on any link from a message and are asked to log in to something, do not do it unless you are 100% sure that the email is legitimate and is sending you to the appropriate site. Many phishing attacks will provide links that send you to fake log-in pages for Gmail, Facebook, or other popular sites. Do not fall for them. You can always open a new browser, and go directly to a known site like Gmail.com, Facebook.com, etc. yourself if you want or need to log-in. That will also take you to the content, safely – if it was legitimate in the first place.

What should we do when we get a phishing message?

If anyone at your organization receives an unsolicited attachment, link, image, or an otherwise suspicious message or call, it is important that they immediately report it to the IT security point-person in your organization. If you do not yet have such an individual, you should identify them as part of developing your security plan. Staff can also report the email as spam or phishing directly in Gmail or Outlook.

Having a plan in place for what staff or volunteers should do if/when they receive a possible phishing message is crucial. In addition, we recommend taking these phishing best practices - not clicking on suspicious links, avoiding attachments, and checking the “from” address - and sharing them with others that you work with, preferably through a widely-used communication channel. This illustrates that you care about the people you are in communication with, and encourages a culture across your networks that is alert and aware of the dangers of phishing.

Your security depends on those organizations you trust, and vice versa. Better practices protect everyone.

In addition to sharing the tips above with all staff and volunteers, you can also practice identifying phishing with the Google Phishing Quiz. We also strongly recommend setting up regular phishing training with staff to test awareness and keep people vigilant. Such training can be formalized as part of regular organizational meetings, or held more informally.

What is important is that everyone in the organization feels comfortable asking questions about phishing, reporting phishing (even if they feel they might have made a mistake such as by clicking a link), and that everyone is empowered to help defend your organization against this high impact and high likelihood threat.
Phishing

- Regularly train staff on what phishing is and how to spot it and defend against it, including phishing on text messages, messaging apps, and phone calls, not just email.
- Frequently remind staff of best practices such as:
 - Do not download unknown or potentially suspicious attachments.
 - Check the URL of a link before you click. Do not click unknown or potentially suspicious links.
 - Do not provide sensitive or private information via email, text, or phone call to unknown or unconfirmed addresses or people.
- Encourage reporting of phishing.
 - Establish a reporting mechanism and point-person for phishing within your organization.
 - Reward reporting, and do not punish failure.
Communicating and Storing Data Securely
Communications and Sharing Data

To make the best decisions for your organization about how to communicate, it is essential to understand the different types of protection that our communications can have, and why such protection is important.

One of the most important for most communication is keeping the contents of your messages secret - which in the modern era is largely taken care of by encryption. Without proper encryption, private communications can be seen by any number of adversaries. Insecure communications can expose sensitive information and messages, reveal passwords or other private data, and possibly put your staff and organization at risk depending upon the nature of your communications and content that you share.

Secure Communications and Civil Society

Thousands of democracy and human rights activists and organizations rely on secure communication channels every day to maintain the confidentiality of conversations in challenging political environments. Without such security practices, sensitive messages can be intercepted and used by authorities to target activists and break up protests. One prominent and well-documented example of this occurred in the aftermath of the 2010 elections in Belarus. As detailed in this Amnesty International report, phone recordings and other unencrypted communications were intercepted by the government and used in court against prominent opposition politicians and activists, many of whom spent years in prison. In 2020, another swell of post-election protests in Belarus saw thousands of protestors adopt user-friendly, secure messaging apps that were not as readily available just ten years prior to protect their sensitive communications.
Encryption is a mathematical process used to scramble a message or a file so that only a person or entity with the key can “decrypt” it and read it. The Electronic Frontier Foundation’s [Surveillance Self Defense Guide](https://www.eff.org/deeplinks/2016/01/survey-the-landscape-unencrypted-messaging) provides a practical explanation (with graphics) of what encryption means:

Unencrypted Messaging

Without any encryption, everyone involved in relaying the message, and anyone who can sneak a peek as it goes by, can read its content. This might not matter much if all you are saying is “hello”, but it could be a big deal if you are communicating something more private or sensitive that you do not want your telecom, ISP, an unfriendly government, or any other adversary to see. Because of this, it is essential to avoid using unencrypted tools to send any sensitive messages (and ideally any messages at all.) Keep in mind that some of the most popular communication methods - such as SMS and phone calls - practically operate without any encryption (like in this image).

As you can see in the image above, a smartphone sends a green, unencrypted text message (“hello”) to another smartphone on the far right. Along the way, a cellphone tower (or in the case of something sent over the internet, your ISP) passes the message along to company servers. From there it hops through the network to another cellphone tower, which can see the unencrypted “hello” message, and is finally then routed to the destination. It is important to note that without any encryption, everyone involved in relaying the message, and anyone who can sneak a peak as it goes by, can read its content. This might not matter much if all you are saying is “hello”, but it could be a big deal if you are communicating something more private or sensitive that you do not want your telecom, ISP, an unfriendly government, or any other adversary to see. Because of this, it is essential to avoid using unencrypted tools to send any sensitive messages (and ideally any messages at all.) Keep in mind that some of the most popular communication methods - such as SMS and phone calls - practically operate without any encryption (like in the image above).
There are two ways to encrypt data as it moves: transport-layer encryption and end-to-end encryption. The type of encryption a service provider supports is important to know as your organization makes choices to adopt more secure communications practices. Such differences are described well by the [Surveillance Self Defense](#) guide, which is adapted again here:

Transport-layer Encryption

Transport-layer encryption, also known as transport layer security (TLS), protects messages as they travel from your device to the messaging app/service’s servers and from there to your recipient’s device. This protects them from the prying eyes of hackers sitting on your network or your Internet or Telecommunications service providers. However, in the middle your messaging/email service provider, the website you are browsing, or the app you are using can see unencrypted copies of your messages. Because your messages can be seen by (and are often stored on) company servers, they may be vulnerable to law enforcement requests or theft if the company’s servers are compromised.

The image above shows an example of transport-layer encryption. On the left, a smart phone sends a green, unencrypted message: “Hello.” That message is encrypted, and then passed along to a cellphone tower. In the middle, the company servers are able to decrypt the message, read the contents, decide where to send it, re-encrypt it, and send it along to the next cellphone tower towards its destination. At the end, the other smartphone receives the encrypted message, and decrypts it to read “Hello.”

End-to-End Encryption

End-to-end encryption protects messages in transit all the way from sender to receiver. It ensures that information is turned into a secret message by its original sender (the first “end”) and decoded only by its final recipient (the second “end”). No one, including the app or service you are using, can “listen in” and eavesdrop on your activity.

The image above shows an example of end-to-end encryption. On the left, a smart phone sends a green, unencrypted message: “Hello.” That message is encrypted, and then passed along to a cellphone tower and then to the app/service’s servers, which cannot read the contents, but will pass the secret message along to its destination. At the end, the other smartphone receives the encrypted message, and decrypts it to read “Hello.” Unlike with transport-layer encryption, your ISP or messaging host is not able to decrypt the message. Only the endpoints (the original devices sending and receiving encrypted messages) have the keys to decrypt and read the message.
WHAT TYPE OF ENCRYPTION DO WE NEED?

When deciding whether your organization needs transport-layer encryption or end-to-end encryption for your communications, the big questions you should ask involve trust. For instance, do you trust the app or service you are using? Do you trust its technical infrastructure? Are you concerned about the possibility that an unfriendly government could force the company to hand over your messages – and if so, do you trust the company’s policies to protect against law enforcement requests? If you answer “no” to any of these questions, then you need end-to-end encryption. If you answer “yes” to them, then a service that supports only transport-layer encryption may suffice - but it is generally better to go with services that support end-to-end encryption when possible.

When messaging with groups, keep in mind that the security of your messages is only as good as the security of everyone receiving the messages. So in addition to carefully choosing secure apps, it is important that everyone in the group is following other best practices regarding account security and device security. All it takes is one bad actor or one infected device to leak the contents of an entire group chat or call.

WHAT END-TO-END ENCRYPTED MESSAGING TOOLS SHOULD WE USE (AS OF 2021)?

If you need to use end-to-end encryption, or just want to adopt the best practice regardless of your organization’s threat context, here are some trusted examples of services that, as of 2021, offer end-to-end encrypted messaging and calls. This section of the Handbook will be regularly updated online, but please note that things change quickly in the world of secure messaging, so these recommendations may not be up-to-date at the time you are reading this section. Also keep in mind that your communications are only as secure as your device itself. So in addition to adopting secure messaging practices, it is essential to implement the best practices described in the device security section of this Handbook.

Recommended End-to-End Encrypted Communications Tools

| TEXT MESSAGING (INDIVIDUAL OR GROUP) | • Signal
| • WhatsApp (only with specific setting configurations detailed below) |
| AUDIO AND VIDEO CALLS | • Signal (up to 8 people)
| • WhatsApp (up to 8 people)
| • Duo (up to 32 people) |
| FILE SHARING | • Signal
| • Keybase / Keybase Teams
| • OnionShare + an end-to-end encrypted messaging app like Signal |
WHAT IS METADATA AND SHOULD WE BE CONCERNED ABOUT IT?

Who you and your staff talk to and when and where you talk to them can often be just as sensitive as what you talk about. It is important to remember that end-to-end encryption only protects the contents (the “what”) of your communications. This is where metadata comes into play. EFF’s Surveillance Self Defense Guide provides an overview of metadata and why it matters to organizations (including an illustration of what metadata looks like):

Metadata is often described as everything except the content of your communications. You can think of metadata as the digital equivalent of an envelope. Just like an envelope contains information about the sender, receiver, and destination of a message, so does metadata. Metadata is information about the digital communications you send and receive.

Some examples of metadata include:
- who you are communicating with
- the subject line of your emails
- the length of your conversations
- the time at which a conversation took place
- your location when communicating

Even a tiny sample of metadata can provide an intimate lens into your organization’s activities. Let us take a look at how revealing metadata can actually be to the hackers, government agencies, and companies that collect it:

They know you called a journalist and spoke with them for an hour before that journalist published a story with an anonymous quote. But they do not know what you talked about.

They know multiple staff within your organization messaged a prominent local digital security trainer. But the topic of the messages remains a secret.

They know you got an email from a COVID testing service, then called your doctor, then visited the World Health Organization’s website in the same hour. But they do not know what was in the email or what you talked about on the phone.

They know you received an email from a local human rights advocacy group with the subject line “Tell the Government: Stop Abusing your Power”. But the content of the email is invisible to them.
Metadata is not protected by the encryption provided by most message services. So if you are sending a message on WhatsApp, for example, keep in mind that while the contents of your message are end-to-end encrypted, it is still possible for others to know who you are messaging, how frequently, and (with phone calls) for how long. As a result, you should keep in mind what risks exist (if any) if certain adversaries are able to find out who your organization talks to, when you talked to them, and (in the case of email) the general subject lines of your organization’s communications.

One of the reasons that Signal is so highly recommended is that, in addition to providing end-to-end encryption, it has introduced features and made commitments to reduce the amount of metadata that it records and stores. For instance, Signal’s Sealed Sender feature encrypts the metadata about who is talking to whom, so that Signal only knows the recipient of a message but not the sender. By default this feature only works when communicating with existing contacts or profiles (people) with whom you have already communicated or whom you have stored in your contacts list. However you can enable this “Sealed Sender” setting to “Allow from anyone” if it is important for you to eliminate such metadata across all Signal conversations, even those with people unknown to you.

DO I NEED END-TO-END ENCRYPTED EMAIL?

Most email providers, for example Gmail, Microsoft Outlook, and Yahoo Mail, employ transport-layer encryption. If you need to communicate particularly sensitive information, email is not the best option. Instead opt for secure messaging options like Signal. Even end-to-end encrypted email options leave something to be desired from a security perspective, for example, not encrypting subject lines of emails and not protecting metadata. With that said, if you must communicate sensitive content using email and are worried that your email provider could be legally required to provide information about your communications to a government or another adversary, you will want to consider using an end-to-end encrypted email option such as ProtonMail or Tutanota.

CAN WE REALLY TRUST WHATSAPP?

WhatsApp is a popular choice for secure messaging, and can be a good option given its ubiquity. Some people are concerned that it is owned and controlled by Facebook, which has been working to integrate it with its other systems. People are also concerned about the amount of metadata (i.e. information about with whom you communicate and when) that WhatsApp collects. If you choose to use WhatsApp as a secure messaging option, be sure to read the above section on metadata. There are also a few settings that you need to ensure are properly configured. Most critically, be sure to turn off cloud backups, show security notifications, and verify security codes. You can find simple how-to guides for configuring these settings for Android phones here and iPhones here. **If your staff “and those with whom you all communicate” do not properly configure these options, then you should not consider WhatsApp to be a good option for sensitive communications that require end-to-end encryption.** Signal still remains the best option for such end-to-end encrypted messaging needs given its secure default settings and protection of metadata.

WHAT ABOUT TEXTING?

Basic text messages are highly insecure (standard SMS is effectively unencrypted), and should be avoided for anything that is not meant for public knowledge. While Apple’s iMessage (known as iMessages) are end-to-end encrypted, if a non-iPhone is in the conversation the messages are not secured. It is best to be safe and avoid text messages for anything remotely sensitive, private, or confidential.
WHY Aren’t Telegram, Facebook Messenger, or Viber Recommended for Secure Chats?

Some services, like Facebook Messenger and Telegram, only offer end-to-end encryption if you deliberately turn it on (and only for one-to-one chats), so they are not good options for sensitive or private messaging, especially for an organization. Do not rely on these tools if you need to use end-to-end encryption, because it is quite easy to forget to change away from the default, less secure settings. Viber claims to offer end-to-end encryption, but has not made its code available for review to outside security researchers. Telegram’s code has also not been made available for a public audit. As a result, many experts fear that Viber’s encryption (or Telegram’s “secret chats”) may be substandard and therefore not suitable for communications that require true end-to-end encryption.

Our Contacts and Colleagues Are Using Other Messaging Apps - How Can We Convince Them to Download a New App to Communicate With Us?

Sometimes there is a tradeoff between security and convenience, but a little extra effort is worth it for sensitive communications. Set a good example for your contacts. If you have to use other less secure systems, be very conscious of what you are saying. Avoid discussion of sensitive topics. For some organizations, they may use one system for general chatting and another with leadership for the most confidential discussions. Of course, it is simplest if everything is just automatically encrypted all the time - nothing to remember or think about.

Luckily, end-to-end encrypted apps like Signal are becoming increasingly popular and user-friendly - not to mention that they have been localized in dozens of languages for global use. If your partners or other contacts need help switching communications over to an end-to-end encrypted option like Signal, take some time to talk them through why it is so important to properly protect your communications. When everyone has an understanding of the importance, the few minutes required to download a new app and the couple days it might take to get used to using it will not seem like a big deal.

Are There Other Settings for End-to-End Encrypted Apps That We Should Be Aware Of?

In the Signal app, verifying security codes (which they refer to as Safety Numbers) is also important. To view a safety number and verify it in Signal, you can open up your chat with a contact, tap their name at the top of your screen, and scroll down to tap “View Safety Number.” If your safety number matches with your contact, you can mark them as “verified” from that same screen. It is especially important to pay attention to these safety numbers and to verify your contacts if you receive a notification in a chat that your safety number with a given contact has changed. If you or other staff need help configuring these settings, Signal itself provides helpful instructions. If using Signal, which is widely considered to be the best user-friendly option for secure messaging and one-to-one calls, be sure to also set a strong pin. Use at least six digits, and not something easy-to-guess like your birth date. For more tips on how to properly configure Signal and WhatsApp, you can check out the tool guides for both developed by EFF in their Surveillance Self-Defense Guide.
Using Chat Apps in the Real World

To limit the damage in case a phone is lost, stolen, or confiscated, it is best practice to minimize the history of messages that are saved on your phone. One easy way to do this is to turn on "disappearing messages" for your organization’s group chats, and to encourage staff to do so on their personal chats as well.

In Signal and other popular messaging applications, you can set a timer for messages to disappear a certain number of minutes or hours after being read. This setting can be customized based upon the individual chat or group. For most of us, setting a disappearing window to one week gives you plenty of time to look things up while not preserving messages that you will never need – but which could potentially be used against you in the future. Remember, what you do not have cannot be stolen.

To turn on disappearing messages in Signal, open up a chat, tap the name of the person/group you are chatting with, tap disappearing messages, choose a timer and tap ok. A similar setting exists in WhatsApp.

In more serious situations where there is a need to immediately delete a message, perhaps because someone’s phone has been stolen or you have sent a message to the wrong person, note that Signal allows you to delete a message to a group or an individual from everyone’s phone within three hours of sending it just by deleting it from your chat. Telegram remains popular in many countries despite its encryption limitations for a similar feature that allows users to delete messages across devices without restrictions.

With that said, if your organization is concerned about the safety of staff as a result of communications that might be seen on their phones, then using disappearing messages with short timers is likely the simplest and most sustainable option.
WHAT ABOUT LARGER GROUP VIDEO CALLS? ARE THERE END-TO-END ENCRYPTED OPTIONS?

With the increase in remote work, it is important to have a secure option for your organization's large group video calls. Unfortunately, no great options currently exist that check all the boxes: user-friendly, support large numbers of attendees and collaboration features, and enable end-to-end encryption by default.

If your meetings do not require collaboration features like screen sharing or breakout rooms, there are a couple of options. For groups up to eight people, Signal is highly recommended. Group video calls on Signal can be joined either from a smartphone or the Signal desktop app on a computer. Keep in mind, however, that only your contacts who already use Signal can be added to a Signal group.

Google Duo provides end-to-end encrypted video calls for up to 32 participants, so it can be a good option for slightly larger meetings that do not require screen sharing or breakout rooms. You can use Duo via a smartphone app or from the web browser on your computer. Participants are not required to download the Duo app to join a group call on their computer, however they will be required to be signed in to a Google account. This not only provides a barrier to use, but also means that Duo collects a lot of metadata about who is talking to whom. So if this is a concern to you, Duo might not be the best option. If you do use Duo, be sure to share any group links securely and to have everyone delete your group after each call.

If you need end-to-end encryption for larger group calls or workshops that require features such as screen sharing and breakout rooms, there are a few options. But keep in mind these options require a bit more care in setting up to ensure that end-to-end encryption is enabled and that security is maintained.

One platform that recently added an end-to-end encrypted option is **Jitsi Meet**. Jitsi Meet is a web-based audio and video conferencing solution that can work for large audiences (up to 75 people) and requires no app download or special software. Jitsi released an experimental end-to-end encryption option in 2020, and as of the publication of this Handbook, Jitsi is actively working on improving it. To set up a meeting on Jitsi Meet, you can go to meet.jit.si, type in a meeting code and share that link (via a secure channel such as Signal) with your desired participants. In order to use end-to-end encryption, take a look at these instructions outlined by Jitsi. Note that all individual users will need to enable end-to-end encryption themselves in order for it to work. When using Jitsi, also be sure to create random meeting room names and to use strong passcodes to protect your calls.

If this option does not work for your organization, you can consider using a popular commercial option like WebEx or Zoom with end-to-end encryption enabled. WebEx has long allowed for end-to-end encryption, however this option is not turned on by default and requires participants to download WebEx to join your meeting. To get the end-to-end encrypted option for your WebEx account you must open a WebEx support case and follow these instructions to ensure end-to-end encryption is configured. Only the host of the meeting needs to enable end-to-end encryption. If they do so, the entire meeting will be end-to-end encrypted. If using WebEx for secure group meetings and workshops, be sure to also enable strong passcodes on your calls.

After months of negative press, Zoom developed an end-to-end encryption option for its calls. However, that option is not turned on by default, requires that the call host associate their account with a phone number, and only works if all participants join via the Zoom desktop or mobile app instead of dialing in. Because it is easy to accidentally misconfigure these settings, we do not recommend relying on Zoom as an end-to-end encrypted option. However, if end-to-end encryption is required and Zoom is your only option, you can follow Zoom’s instructions to configure it. Just be sure to check any call before it starts to ensure it is indeed end-to-end encrypted by clicking the green lock in the upper left hand corner of the Zoom screen and seeing “end-to-end” listed next to the Encryption setting. You should also set a strong passcode for any Zoom meeting.

In addition to the tools mentioned above, this flow-chart developed by Frontline Defenders highlights some video call and conferencing options that, depending upon your risk context, might make sense for your organization.
WHAT IF WE REALLY DO NOT NEED END-TO-END ENCRYPTION FOR ALL OUR COMMUNICATIONS?

If end-to-end encryption is not needed for all of your organization’s communications based upon your risk assessment, you can consider using applications protected by transport-layer encryption. Remember, this type of encryption requires that you trust the service provider, such as Google for Gmail, Microsoft for Exchange, or Facebook for Messenger, because they (and anyone they might be compelled to share information with) can see/hear your communications. Once again, the best options will depend upon your threat model (for example, if you do not trust Google or if the U.S. government is your adversary, then Gmail is not a good option), but a few popular and generally trusted options include:

<table>
<thead>
<tr>
<th>EMAIL</th>
<th>TEXT MESSAGING (INDIVIDUAL OR GROUP)</th>
<th>GROUP CONFERENCING, AUDIO AND VIDEO CALLS</th>
<th>FILE SHARING</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Gmail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Outlook (via Office 365)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Do not host your own Microsoft Exchange server for your organization’s email. If you are currently doing so, you should migrate to Office 365.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Google Hangouts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Slack</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Microsoft Teams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Mattermost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Line</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• KaKao Talk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Telegram</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Jitsi Meet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Google Meet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Microsoft Teams</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• WebEx</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• GotoMeeting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Zoom</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Google Drive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Microsoft Sharepoint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Dropbox</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Slack</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Microsoft Teams</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A NOTE ABOUT FILE SHARING

In addition to securely sharing messages, sharing files safely is likely an important part of your organization’s security plan. Most file sharing options are built-in to messaging applications or services that you might already be using. For instance, sharing files via Signal is a great option if end-to-end encryption is needed. And if transport-layer encryption is enough, using Google Drive or Microsoft Sharepoint might be a good option for your organization. Just be sure to properly configure sharing settings so that only the appropriate people have access to a given document or folder, and ensure that these services are connected to staff’s organizational (not personal) email accounts. If you can, prohibit sharing sensitive files via email attachments or physically with USBs. Using devices like USBs within your organization greatly increases the likelihood of malware or theft and relying on email or other forms of attachments weakens your organization’s defences against phishing attacks.

Organizational alternatives for file sharing

If you are looking for a secure file sharing option for your organization that is not directly embedded in a messaging platform (or perhaps you are running into file size limits when sharing large documents), consider OnionShare. OnionShare is an open source tool that allows you to securely and anonymously share a file of any size. It works by having the sender download the OnionShare app (available on Mac, Windows and Linux computers), uploading the file(s) they wish to share, and generating a unique link. This link, which can only be processed in Tor Browser, can then be shared via any secure messaging channel (Signal, for instance) to the intended recipient. The recipient can then open the link in Tor Browser and download the file(s) to their computer. Keep in mind, the files are only as secure as the method through which you share the link. Tor will be explained in more detail in a later “advanced” section of the Handbook, but for the purposes of file sharing within your organization, keep OnionShare in mind as a safer alternative to sharing large files on USBs around the office if you do not have a trusted Cloud provider option.

If your organization is already investing in a password manager, as described in this Handbook’s section on passwords, and chooses Bitwarden’s premium or teams account, the Bitwarden Send feature is another option for secure file sharing. This feature allows users to create secure links to share encrypted files via any secure messaging channel (such as Signal). File size is limited to 100MB, but Bitwarden Send allows you to set an expiration date on links, password protect access to shared files, and limit the number of times that your link can be opened.
Communicating and Sharing Data Securely

- Require the use of trusted end-to-end encrypted messaging services for your organization’s sensitive communications (and ideally for all communications.)
 - Take time to explain to staff and external partners why secure communications are so important; this will enhance the success of your plan.
- Set a policy on how long you will retain messages and when/if the organization will use “disappearing” communications.
- Ensure proper settings are in place for secure communications apps, including:
 - Ensure all staff are paying attention to security notifications and, if using WhatsApp, not backing up chats.
 - If using an app where end-to-end encryption is not enabled by default (e.g. Zoom or Webex), ensure the required users have turned on the proper settings at the outset of any call or meeting.
- Use cloud-based email services such as Office 365 or Gmail for your organization.
 - Do not attempt to host your own email server.
 - Do not allow staff to use personal email accounts for work.
- Frequently remind the organization about security best practices related to group messaging and metadata.
 - Be aware of who is included in group messages, chats, and email threads.
For most civil society organizations, one of the most important decisions to make is where to store their data.

Is it “more secure” to store data on staff computers, on a local server, on external storage devices, or in the cloud? In 99% of situations, the easiest and most secure option is to keep data stored in trusted cloud storage services. Some common examples include Microsoft 365, Google Drive, or Dropbox. Without a comprehensive cloud storage plan, it is likely that your organization’s data is stored in a variety of places - including staff computers, external hard drives, and maybe even a local server. While it is possible to secure data on all these devices, it is very hard to do so successfully without spending a lot of money and hiring significant IT staff.

The advent of affordable (sometimes free) cloud-based data storage has made life easier (and more secure) for many resource-limited civil society organizations. Unfortunately, many still attempt to host their own servers with limited IT skills or support. In March 2021, the threat of such organizational infrastructure became real for tens of thousands of organizations across the world when a Chinese government-affiliated threat actor, called Hafnium, unleashed a global cybersecurity catastrophe with a sophisticated attack on self-hosted Microsoft Exchange servers. The attack compromised local servers, enabling the hackers to gain access to organizational email accounts and allowing for the installation of additional malware on victim’s servers and connected systems. While Microsoft quickly published an update and instructions to identify and remove potential intruders, many smaller organizations lacked the IT capacity to quickly apply such updates, leaving them exposed for extended periods of time. The scope and impact of this global hack reveals the danger of civic organizations, particularly smaller ones with limited IT staff, choosing to self-host email servers and other types of sensitive data.
BENEFITS OF CLOUD STORAGE

Even if you take all the right steps to protect your computers against malware and physical theft, it is still possible for a determined adversary to hack into your computer or local server. It is much harder for them to defeat the security defenses of, for example, Google or Microsoft. Good cloud storage companies have unparalleled security resources and have a strong business incentive to provide maximum security to their users. In short: a trusted cloud storage strategy will be much easier and cheaper to implement and keep secure over time. So instead of worrying about trying to secure your own server, you can focus your energy on a handful of simpler tasks. Keeping the bulk of your information in the cloud also helps with a range of other common risks. Was someone’s computer left in a restaurant or their phone on the bus? Did your child tip a glass of juice onto your keyboard, leaving your device inoperable? Does a staffer have malware and need to erase their computer and start fresh? If most documents and data are in the cloud, it is easy to re-synchronize and start fresh on a cleaned or entirely new computer. Also if malware gets into a computer or if a thief scans a hard drive, there is nothing to steal if most documents are accessed through the web browser.

WHAT CLOUD STORAGE PROVIDER SHOULD WE CHOOSE?

The two most popular cloud storage options are Google Workspace (formerly known as GSuite) and Microsoft 365. If you and your staff already use Gmail, signing up your organization for Google Workspace and storing data in Google Drive with its built-in Google Docs, Sheets, and Slides apps for word processing, spreadsheets, and presentations make a lot of sense. Similarly, if you are an organization reliant on Excel and Word, the easy choice is to sign up for Microsoft 365, which gives your organization access to Outlook for email and licensed versions of Microsoft Word, Excel, Powerpoint, and Teams. Regardless of which provider you choose, storing data securely in the cloud requires implementing good sharing settings and training staff to understand how and when to share (and not share) folders and documents. In general, you should set up folders within your cloud storage drive that limit access to only the staff that need it for given files. Routinely audit your system to make sure that you are not “oversharing” any files (such as by turning on universal link sharing for files that should instead be limited to just a few people.)

WHAT IF WE DO NOT TRUST GOOGLE OR MICROSOFT OR OTHER CLOUD STORAGE PROVIDERS?

If one of your adversaries (for instance, a foreign or local government) can legally force Google or Microsoft (or another cloud storage provider) to hand over data, then it might not make sense to choose them as data storage options. This risk might be higher if your adversary is the United States government, for example, but much lower if your adversary is an authoritarian regime. Keep in mind that Google and Microsoft both have policies about only handing over data when legally obligated to do so, and recognize that your organization could itself be vulnerable to the same sort of legal demands from your own government if hosting data locally. In situations where Google or Microsoft cloud storage do not make sense for your organization, an alternative option to consider is Keybase. The “teams” feature in Keybase allows your organization to share files, and messages, using end-to-end encryption in a secure cloud environment without having to rely on a third-party provider. As a result, it can be a good option for securely storing documents and files across your organization. However, Keybase is less familiar to most users, so be aware that adoption of this tool is likely to take more training and effort than other aforementioned solutions. With that said, if you do opt to go it alone and not use cloud storage altogether, it is crucial that you invest time and resources into strengthening the digital defenses of your organization’s devices, and ensuring any local servers are properly configured, encrypted, and kept physically safe. You may save on monthly subscription fees, but it will cost your organization in staff time and resources, and in being far more vulnerable to attack.

BACKING UP DATA

Whether your organization stores data on physical devices or in the cloud, it is important to have a backup. Especially if you rely on physical device storage, it is pretty easy to lose access to
your data. You could spill coffee on your computer and destroy the hard drive. Staff computers could be hacked and all local files locked with ransomware. Someone could lose a device on the train or have it stolen along with their purse. As mentioned above, this is another reason why using cloud storage can be a benefit, because it is not tied to a specific device that can be infected, lost, or stolen. Macs come with built-in backup software called Time Machine which is used together with an external storage device; for Windows devices, File History offers similar functionality. iPhones and Androids can automatically back up their most important contents to the cloud if enabled under your phone’s settings. If your organization is using cloud storage (like Google Drive) the risk of Google being taken down or your data destroyed in a disaster is quite low, but human error (like accidentally deleting important files) is still a possibility. So exploring a cloud backup solution like Backupify may be worthwhile. If data is stored on a local server and/or local devices, a secure backup becomes even more critical. You can backup your organization’s data to an external hard drive, but be sure to encrypt that hard drive using a strong password. Time Machine can encrypt hard drives for you, or you can use trusted encryption tools for the whole hard drive like VeraCrypt or BitLocker. Be sure to keep any backup devices in a separate location from your other devices and files. Remember, a fire that destroys both your computers and their backups means you do not have backups at all. Consider keeping a copy in a very secure location, such as a safe deposit box.

Enhancing the security of Organizational cloud accounts

If your organization chooses to set up a domain in Google Workspace or Microsoft 365, be aware that both companies offer higher levels of security (for free in many cases) to civil society organizations. Google’s Advanced Protection Program and Microsoft’s AccountGuard provide even more robust security to all of your organization’s cloud accounts, and help you greatly reduce the likelihood of effective phishing and account compromise. If you believe that your organization qualifies and are interested in enrolling your organization in either plan, visit the websites linked above or contact cyberhandbook@ndi.org for further assistance.

Storing Data Securely

- Store sensitive data exclusively in a trusted cloud storage service.
 - Ensure any connected accounts used to access such a service have strong passwords and 2FA.
- Set and enforce a policy to limit sharing settings within the cloud.
 - Train all staff on how to properly share (and not overshare) documents.
- If your organization opts to store data locally, invest in skilled IT staff.
- Keep your data backups secure - encrypt backup hard drives or other backup devices.
Staying Safe on the Internet

Building a Culture of Security
A Strong Foundation: Securing Accounts and Devices
Communicating and Storing Data Securely
Staying Safe on the Internet
Protecting Physical Security
What To Do When Things Go Wrong
When using the internet on your phone or computer, your activity can say quite a bit about you and your organization.

It is important to keep sensitive information – like usernames and passwords that you type into a website, your social media posts, or in certain contexts even the names of the websites that you visit – out of the view of prying eyes. Having your access to certain sites or apps blocked or restricted is also a common concern. These two problems – internet surveillance and internet censorship – go hand in hand, and the strategies to reduce their impacts are similar.

Browsing Securely

USING HTTPS

The most important step to limiting an adversary’s ability to surveil your organization online is to minimize the amount of information available about you and your colleagues’ internet activity. Always make sure you are connecting to websites securely: make sure the URL (location) starts with "https" and shows a small lock icon in the address bar of your browser. When you browse the internet without encryption, the information you type into a site (like passwords, account numbers, or messages), and the details of the site and pages you are visiting are all exposed. This means that (1) any hackers on your network, (2) your network administrator, (3) your ISP and any entity they might share data with (like governmental authorities), (4) the ISP of the site you are visiting and any entity they might share data with, and of course (5) the site you are visiting itself all have access to quite a bit of potentially sensitive information.
Surveillance, Censorship, and Civil Society

Governments are increasingly using their influence and authority over internet service providers and other local internet infrastructure to prevent individuals and civil society groups from accessing information on the internet. In some cases, such internet disruptions are aimed at taking down key communications and information sharing platforms including social media and news sites. For instance, in response to protests resulting from a military coup, the Myanmar military directed mobile operators to temporarily shut down the entire mobile data network in the country. This came shortly after more targeted blocking of Facebook, Twitter, and Instagram. In addition to blocking internet access and websites, governments and other threat actors across the globe are using increasingly accessible surveillance technology to monitor the activity of citizens online. For instance, according to Freedom House’s Freedom on the Net 2020 report, the Ugandan government partnered with the Chinese tech company Huawei to surveil opposition figures and civic activists in the run up to and aftermath of a contentious presidential election in the country.

The increasing frequency of such attacks on freedom of information online highlight just how essential it is for civil society groups to understand the risks of operating on the internet and develop plans for how to connect when connectivity is restricted.
Let’s take a real-world example of what browsing without encryption looks like:

As shown above, an adversary can see where you are, that you are going to news.com, looking specifically at the page on protests in your country, and see your password that you share to log in to the site itself. Such information in the wrong hands not only exposes your account but also gives your adversaries a good idea of what you might be doing or thinking about.

Adapted from the Totem Project’s How the Internet Works (CC–BY–NC–SA)
Using HTTPS (the "s" stands for secure) means that encryption is in place. This offers you much more protection. Let’s take a look at what browsing with HTTPS (aka with encryption) looks like:

Adapted from the Totem Project’s How the Internet Works (CC–BY–NC–SA)
With HTTPS in place, a potential adversary can no longer see your password or other sensitive information that you might share to a website. They can, however, still see what domains (for example, news.com) that you are visiting. And while HTTPS also encrypts information about the individual pages within a site (for example, website.com/protests) that you visit, sophisticated adversaries can still see this information by inspecting your internet traffic. So with HTTPS in place, an adversary might know that you are going to news.com, but they would not be able to see your password, and it would be more difficult (but not impossible) for them to see that you are looking up information about protests (to use our example). That is an important difference. Always check that HTTPS is in place before navigating through a website or entering sensitive information. You can also use the **HTTPS Everywhere browser extension** to ensure you are using HTTPS at all times, or if you are a user of Firefox, turn on **HTTPS only mode** in the browser. If you are presented with a warning from your browser that a website might be insecure, do not ignore it. Something is wrong. It might be benign – like the site has an expired security certificate – or the site might be maliciously spoofed or faked. Either way, it is important to heed the warning and not proceed to the site. HTTPS is essential and encrypted DNS provides some extra protection against snooping and site blocking, but if your organization is concerned about highly targeted surveillance regarding your online activities and faces sophisticated censorship online (such as websites and apps being blocked), you might want to use a trusted virtual private network (VPN).

Using Encrypted DNS

If, given your threat environment, you want to make it more difficult (but not impossible) for an ISP to know the details of the websites that you visit, you can use encrypted DNS.

If you are wondering, DNS stands for the Domain Name System. It is essentially the phonebook of the Internet, translating human-friendly domain names (like ndi.org) to web-friendly internet protocol (IP) addresses. This allows people to use web browsers to easily look up and load Internet resources and visit websites. By default though, DNS is not encrypted.

To use encrypted DNS and add a bit of protection to your internet traffic at the same time, one easy option is to download and turn on **Cloudflare’s 1.1.1.1 app** on your computer and mobile device. Other encrypted DNS options, including Google’s 8.8.8.8, are available but require **more technical steps** to configure. If you use Firefox browser, encrypted DNS is now turned on by default. Users of Chrome or Edge browsers can turn on **encrypted DNS** as well through the browser’s advanced security settings by turning on “use secure DNS” and selecting “With: Cloudflare (1.1.1.1)” or the provider of their choice.

Cloudflare’s 1.1.1.1 with WARP encrypts your DNS and encrypts your browsing data - providing a service similar to a traditional VPN. While WARP does not fully protect your location from all websites that you visit, it is an easy-to-use feature that can help your organization’s staff take advantage of encrypted DNS and additional protection from your ISP in situations where a full VPN is either not functional or required given the threat context. In the 1.1.1.1 with WARP advanced DNS settings, staff can also turn on 1.1.1.1 for Families to provide additional protection against malware while accessing the internet.
WHAT IS A VPN?

A VPN is essentially a tunnel that protects against the surveillance and blocking of your internet traffic from hackers on your network, your network administrator, and your ISP and anyone they might share data with. Here is an example of what browsing with a VPN looks like:

Adapted from the Totem Project's *How the Internet Works* (CC–BY–NC–SA)
To describe VPNs in more depth, this section references EFF’s Surveillance Self Defense Guide:

Traditional VPNs are designed to disguise your actual network IP address and create an encrypted tunnel for the internet traffic between your computer (or phone or any networked "smart" device) and the VPN’s server. Because traffic in the tunnel is encrypted and sent to your VPN, it is much harder for third parties like ISPs or hackers on public Wi-Fi to monitor, modify, or block your traffic. After going through the tunnel from you to the VPN, your traffic then leaves the VPN to its ultimate destination, masking your original IP address. This helps to disguise your physical location for anyone looking at traffic after it leaves the VPN. This offers you more privacy and security, but using a VPN does not make you completely anonymous online: your traffic is still visible to the operator of the VPN. Your ISP will also know that you are using a VPN, which might raise your risk profile.

This means choosing a trustworthy VPN provider is essential. In some places like Iran, hostile governments have actually set up their own VPNs to be able to track what citizens are doing. To find the VPN that is right for your organization and its staff, you can evaluate VPNs based on their business model and reputation, what data they do or do not collect, and of course the security of the tool itself.

Why should you not just use a free VPN? The short answer is that most free VPNs, including those that come pre-installed on some smartphones, come with a big catch. Like all businesses and service providers, VPNs have to sustain themselves somehow. If the VPN does not sell its service, how is it keeping its business afloat? Does it solicit donations? Does it charge for premium services? Is it supported by charitable organizations or funders? Unfortunately, many free VPNs make their money by collecting and then selling your data.

A VPN provider that does not collect data in the first place is the best choice. If the data is not collected, it cannot be sold or handed over to a government if requested. When looking through a VPN provider’s privacy policy, see whether the VPN actually collects user data. If it does not explicitly state that user connection data is not being logged, chances are that it is. Even if a company claims not to log connection data, this may not always be a guarantee of good behavior.

It is worthwhile to do a search on the company behind the VPN. Is it endorsed by independent security professionals? Does the VPN have news articles written about it? Has it ever been caught misleading or lying to its customers? If the VPN was established by people known in the information security community, it is more likely to be trustworthy. Be skeptical of a VPN offering a service that no one wants to stake their personal reputation on, or one that is run by a company that no one knows about.

Fake VPNs in the Real World

In late 2017, following a surge in protests in the country, Iranians started discovering a “free” (but fake) version of a popular VPN being shared via text messages. The free VPN (which did not actually work) promised to grant access to Telegram, which at that time was blocked locally. Unfortunately the fake application was nothing more than malware that allowed authorities to track the movement and monitor the communications of those who downloaded it.
So what VPN should we use?

If using a VPN makes sense for your organization, a couple of trustworthy options include TunnelBear and ProtonVPN. Another option is to configure your own server using Jigsaw's Outline, where there is not a company managing your account, but in return you have to set up your own server. If your organization is a bit larger, you may want to consider a business VPN that provides account management features such as TunnelBear's Teams plan. For certain qualifying organizations in the civil society and human rights space, TunnelBear provides credits for free use of their VPN (which usually costs about $3 per month). If you believe that your organization qualifies and are interested, contact cyberhandbook@ndi.org for more information.

Although most modern VPNs have improved in regard to performance and speed, it is worth keeping in mind that using a VPN might slow down your browsing speed if you are on a very low-bandwidth network, suffer from high latency or network delays, or experience intermittent internet outages. If you are on a faster network, you should default to using a VPN all the time.

If you do recommend that staff use a VPN, it is also important to ensure that people keep the VPN turned on. It might sound obvious, but a VPN that is installed but not running does not provide any protection.

Anonymity through Tor

In addition to VPNs, you may have heard of Tor as another tool for more securely using the internet. It is important to understand what both are, why you might use one or the other, and how both might impact your organization.

Tor is a protocol for transmitting data anonymously over the Internet by routing messages or data through a decentralized network. You can learn more about how Tor works here, but in short, it routes your traffic through multiple points along the way to its destination so that no single point has enough information to expose who you are and what you are doing online at once.

Tor is different from a VPN in a few ways. Most fundamentally, it differs because it does not rely on trust of any one specific point (like a VPN provider).

This graphic, developed by EFF, shows the difference between a traditional VPN and Tor.

The easiest way to use Tor is through the Tor browser. It operates like any normal browser except that it routes your traffic through the Tor network. You can download Tor browser on Windows, Mac, Linux or Android devices. Keep in mind that when using Tor Browser, you are only protecting the information you access while in the browser. It does not provide any protection to other apps or downloaded files that you might open separately on your device. Also keep in mind that Tor does not encrypt your traffic, so - much like when using a VPN - it is still essential to use best practices like HTTPS when browsing.

If you would like to extend the anonymity protections of Tor to your entire computer, more tech savvy users can install Tor as a systemwide internet connection, or consider using the Tails operating system, which routes all traffic through Tor by default. Android users can also use the Orbot app to run Tor for all internet traffic and apps on their device. Regardless of how you use Tor, it is important to know that when using it, your internet service provider cannot see what websites you are visiting but they "can" see that you are using Tor itself.
Much like when using a VPN, this could raise the risk profile of your organization considerably, because Tor is not a very common tool and therefore stands out to adversaries that may be monitoring your internet traffic.

So, should your organization use Tor? The answer: it depends. For most at-risk organizations a trusted VPN that is properly used by all staff at all times is easiest, most convenient, and in the age of greater VPN usage globally, less likely to raise red flags. However if you either cannot afford a trustworthy VPN or operate in an environment where VPNs are routinely blocked, Tor can be a good option for limiting the impact of surveillance and avoiding censorship online.

Are there any reasons we should not use a VPN or Tor?

Apart from concerns around non-reputable VPN services, the biggest thing to consider is whether using a VPN or Tor might attract unwanted attention or, in some jurisdictions, be against the law. Although your ISP will not know what sites you are visiting while using these services, they can see that you are connected to Tor or a VPN. So if that is illegal where your organization operates or might cause more attention or risk than simply navigating the web with standard HTTPS and encrypted DNS, perhaps a VPN or especially Tor (which is much less commonly used and therefore a bigger "red flag") is not the right choice for your organization. However, as VPN use becomes more common, this is less of a distinguishing factor. Defaulting to having a VPN on all the time is the best choice if legal and possible.
WHAT BROWSER SHOULD WE BE USING?

Use a reputable browser such as Chrome, Firefox, Brave, Safari, Edge, or Tor Browser. Both Chrome and Firefox are very widely used and do a great job with security. Some people prefer Firefox given its privacy focus. Either way, it is important that you restart them and your computer relatively frequently to keep your browser up-to-date. If you are interested in comparing browser features, check out this resource from the Freedom of the Press Foundation. Regardless of browser, it is also a good idea to use an extension or add-on like Privacy Badger, uBlock Origin, or DuckDuckGo’s Privacy Essentials that stops advertisers and other third-party trackers from tracking where you go and what sites you visit. And when browsing the internet, consider switching your default web searches away from Google to DuckDuckGo, Startpage, or another privacy-protecting search engine. Such a switch will help limit advertisers and third-party trackers as well.

Browser Security in the Real World

Tibetan civil society activists were targeted in early 2021 with a cleverly designed malicious browser add-on that stole their email and browsing data. The add-on, which was titled “Flash update components”, was presented to users who visited websites that were linked to phishing emails. Such browser extension or add-on attacks can be just as damaging as malware shared directly through phishing downloads or other software.
Social Media Safety

Your organization can reveal a lot – and sometimes more than it intends – by posting and commenting on social media.

Whether it is Facebook, Twitter, Instagram, YouTube or region-specific social media sites such as VKontakte and Odnoklassniki, you should always think carefully about what you post, and properly configure any privacy settings that may be available. This is true not only for your organization’s official pages, but also in some cases for staff’s personal accounts and those of their family and friends too.

Social Media Security and Civil Society

Even low risk organizations can be targeted and harassed on social media without proper security policies in place. In this example from 2018, a non-profit animal shelter lost thousands of dollars and alienated supporters after an unauthorized account administrator set up a fake fundraising effort, and fake accounts impersonating employees appeared on the platform. If hackers will go to those lengths to make a few thousand dollars off of an animal shelter, you can imagine the damage sophisticated adversaries might be able to inflict if they were to gain access to your organization’s accounts or successfully impersonate you online.

In addition to hacking accounts, civil society groups and individual users in many countries are also facing repercussions for content posted on social media. In one example in Zambia from 2020, police arrested a 15-year-old student for allegedly defaming the president in a Facebook post. The child, who posted under a pseudonym, was identified by the phone number used to register the account and his internet protocol (IP) address.
DEVELOP AN ORGANIZATIONAL SOCIAL MEDIA POLICY

Assume that anything posted on social media could become public knowledge, and craft an organizational social media policy accordingly. This policy should answer questions such as: Who has access to your social media accounts? Who is allowed to post and who needs to approve posts? What information should/should not be shared on social media? If you post photos, location information, or other identifying information about your staff, partners, or event attendees have you asked for their permission, and have they considered the risks? In addition to developing your policy and making it clear to staff, be sure to properly configure your privacy and security (often referred to as "safety") settings. Some key questions to ask yourself as you decide what privacy and safety settings make most sense for your personal and organizational accounts, include:

- Do you want to share your posts with the public, or only with a specific group of people internally or externally?
- Should anybody be able to comment, reply, or interact with your messages or posts?
- Should people be able to find you or your organization using your email address or (personal or professional) phone number?
- Do you want your location shared automatically when you post?
- Do you want to block or mute hostile accounts?
- Do you want to block specific words or hashtags?
- Should people be able to find you or your organization using your email address or (personal or professional) phone number?
- Do you want to share your posts with the public, or only with a specific group of people internally or externally?
- Should anybody be able to comment, reply, or interact with your messages or posts?
- Should people be able to find you or your organization using your email address or (personal or professional) phone number?
- Do you want your location shared automatically when you post?
- Do you want to block or mute hostile accounts?
- Do you want to block specific words or hashtags?

Each social media site will have different privacy and safety settings, but these general concepts apply universally. As you consider these questions, take advantage of helpful privacy guides from the major platforms: Facebook, Twitter, Instagram, and YouTube. For Facebook in particular, be cautious about your privacy choices regarding Groups. Facebook Groups are a popular spot for engagement, advocacy, and information sharing, but unrestricted groups can be joined by anyone. It is not uncommon for “fake” accounts to pose as real people in an effort to infiltrate private social media groups or pages. So accept “friend” and “follow” requests carefully. Remember that your organization’s social media accounts are only as secure as the accounts that are “linked” to it. This is especially important to remember for Facebook, where your organization’s page may be managed by someone’s linked personal account.

ONLINE HARASSMENT

Unfortunately, many organizations face significant harassment online, especially on social media. Such harassment is often directed with even more intensity at women and marginalized populations. Online violence against women in particular can create a hostile environment which leads to self-censorship or withdrawal from political or civic discourse. As identified in NDI’s Gender, Women, and Democracy team’s Tweets that Chill report, when attacks against politically-active women are channeled online, the expansive reach of social media can magnify the effect of harassment and psychological abuse, undermining women’s sense of personal security in ways not experienced by men.

As your organization develops its social media policy, it is important to be cognizant of these dynamics. Build into your security plan structured support for staff who face negative messages, insults, and threats on social media (both as part of their jobs and in their personal lives.) Develop an anti-harassment infrastructure within your organization, including surveying your staff to understand how online harassment impacts them and create a rapid response team to help staff face challenging situations. PEN America’s Online Harassment Field Manual also provides detailed recommendations on how you can support staff who face such harassment. You might consider, if your staff are comfortable doing so, reporting incidents of harassment and/or problematic accounts directly to the platforms as well.

When engaging with staff who have been the victim of harassment online (and in the physical world as well), it is important to be sensitive. As outlined by the Association for Progressive Communications’ Women’s Rights Programme’s Take Back the Tech, understand that a survivor may be dealing with trauma, and recognize that violence (online or offline) is never the fault of the survivor. Ensure such issues can be raised and discussed (if staff are comfortable doing so) in a confidential and safe environment, with the option of anonymity. And include in your organization’s security plan a list of local professionals, organisations, and law enforcement agencies that you can connect staff to for legal, medical, mental health, and technical assistance if needed. For additional ideas, check out Feminist Frequency’s Online Safety Guide.
In addition to protecting your ability to access the internet safely, it is also important to do what you can to ensure others can access your organization’s websites or web properties.

For social media pages, this means protecting those accounts with strong, unique passwords and two-factor authentication. For your website, this means protecting it against hacking and denial of service attacks. Distributed Denial of Service (DDoS) attacks are where a large group of computers simultaneously drown your server in malicious traffic. If you are a civil society organization or other non-profit organization, you can most likely qualify for free DDoS protection - which makes it much harder for an adversary to take your website down - through either Cloudflare’s Project Galileo, Google’s Project Shield, or eQualitie’s Deflect service.

Websites are hosted on computers - and those are vulnerable to hacking just like your own devices. If possible, your organization should take advantage of existing hosting services like Wordpress.com, Wix, or others that manage all the site security for you. If you are reading this handbook, your organization also likely qualifies for free secure hosting of a Wordpress site by eQualitie through their eQPress Hosting service. This is a great option for civic organizations with existing Wordpress sites or if your organization is looking to build a new site. If you need to host your website yourself, then be sure that you focus on keeping your operating system and web hosting software up to date, just like you would for your own personal computer. Consider using well-established cloud hosting providers such as Amazon Web Services (AWS), Microsoft Azure, or Greenhost’s Eclips.is, which provide enhanced security options for hosted websites. And of course regardless of what tools you use to host your website, ensure that any accounts used to access content editing and configuration settings are protected with strong passwords and two factor authentication.

If your organization has the technical savvy to host your own website, you should also consider choosing a so-called “static-site” or flat website. As opposed to dynamic websites, these types of sites reduce the attack surface for hackers and will make your website more attack-resistant.
Protect your WiFi Network

All these steps to protect web traffic from surveillance and censorship are important, but they are not a substitute for basic network security in the office (and at home.)

Do not forget the basics like using a strong password (not the default password) on your WiFi router, ensuring that only authorized users have access to your network by frequently changing the password, and enabling your wireless routers’ built-in firewall. Consider creating a guest network in your office as well if you have visitors coming in and out of the building who use the internet.

Staying Safe on the Internet

- Conduct regular training for staff on the importance of following basic web security measures.
- Remind staff to always browse with HTTPS and encrypted DNS.
- Require staff to regularly restart their browsers to install updates.
- Encourage the use of privacy protecting browsers and extensions.
- If a VPN is appropriate given your organization's context, choose a reputable VPN, train staff on its use, and ensure it is consistently used.
- Develop and distribute a clear organizational policy on social media use.
- Enable privacy and security settings on all social media accounts.
- Understand the impacts of online harassment and be prepared to support staff who are affected.
- Develop a list of local professionals, organisations, and law enforcement agencies that you can connect staff to for legal, mental health, and technical assistance in response to online harassment.
- Sign up for DDOS protection for your websites.
- Use a trusted, reliable web hosting provider.
- Use a strong password and a guest network for your office WiFi.
Protecting Physical Security
It is essential to keep your devices physically secure. But physical security goes beyond just devices, and should include strategies to protect everything else in your world: such as hard-copy documents, your organization’s office or work spaces, and of course you, your staff, and volunteers.

Surveillance, Censorship, and Civil Society

Physical attacks on civil society organizations are unfortunately a common occurrence, and often have significant implications for both physical and information security. One common tactic taken by adversaries to suppress the activity of CSOs includes raiding and closing offices - to both intimidate staff and in some cases to steal or confiscate information and tech equipment. Such threats often target minority and human rights groups and CSOs operating in the democracy and governance space. For instance, the offices of LGBT+ Rights Ghana, a civic organization that in early 2021 opened the country’s first community center for the local LGBTQI+ community, were threatened to be burned down, and were eventually raided and closed by police. Such raids not only impact an organization’s physical operations, but can damage staff’s sense of security as well.
An essential component of information security is the physical security of your devices.

In addition to mitigating the impact of a stolen device by using lockscreens and passwords, implementing full disk-encryption, and turning on remote wipe features, you should also consider how to keep those devices from being stolen in the first place. To make theft more difficult, be sure to install strong locks (and rotate them whenever staff change) at the office and/or home. Also consider buying a laptop safe or lockable cabinet to keep devices more protected overnight. Security cameras have become much less expensive, with simple versions designed for home use available more widely. Such camera or motion sensor systems around the premises can detect and hopefully deter physical break-ins and theft. Look for a privacy-respecting option available in your country, and be sure to select cameras provided by trusted companies that do not have an incentive to hand over data and information to a potential adversary.

If the risk of break-in or office raid is high, keep the organization’s most sensitive data away from the office - either by being stored safely in the cloud (as discussed earlier) or by being physically moved to a less targeted location. If old devices have information still stored on them but are no longer in use, consider wiping them - this guide from WireCutter is a great resource on how to do this for most modern devices. If wiping your devices is not possible, you can physically destroy them too. The easiest, if not most environmentally sensitive, way to do that is to break up the devices and their hard drives with a hammer. Sometimes the oldest solutions still work the best! Even before these technical steps, take a moment to create an inventory of all the equipment in the organization. If you do not have a list of all your devices, it is harder to keep track of what might be missing if one gets stolen.

Setting up your own office security system

If a full office security system is out of your organization’s budget and you’re particularly concerned about privacy you can try a creative option like the Guardian Project’s Haven App to notify you of potential office intrusion. Haven is a smartphone app that can turn any Android phone into a motion, sound, vibration and light detector. You can set up the app on a few cheap Android devices at different points in the office to notify you of and record any unexpected guests and unwanted intruders. The Haven App can also be useful to set up in a hotel room or apartment if you are at heightened risk. A full security system is best, but if that’s out of reach and you’d like to learn more about how to use the Haven app you can visit the project website.
WHAT DO WE DO WITH ALL THIS PAPER?

It is likely that your organization has a lot of information that is printed on paper, written in notebooks, or scribbled down on post-it notes. Some of this can be very sensitive: printouts of budgets, lists of participants, sensitive letters from donors, and notes from private meetings. It is essential to think about the security of this information as well. If you absolutely need to keep hard copies of sensitive information, ensure that it is stored safely in a locked cabinet or other safe place. Do not keep any private or sensitive information (including passwords) laying around on a desk or written up on a white board. If you believe your organization to be at high risk of a break-in or raid, keep highly sensitive information in a less targeted location. To the extent possible, endeavor to dispose of unneeded hard-copy information. Remember: if you do not have it, it cannot be stolen. Set an organizational policy regarding ownership of hard-copy notes, and be sure to collect any paper notes from staff if they decide to leave or are let go from the organization (just like you would collect an organization-issued computer or phone). To get rid of sensitive paper, purchase a quality shredder. A fun end-of-week activity can be taking a 15-minute break with your staff to shred any leftover, sensitive print-outs or notes from the prior week.

THE OFFICE POLICY

Although for many the realities of “the office” have changed significantly since the beginning of the COVID-19 pandemic, it is still important for your organization to set a clear policy regarding office access. Such a policy should address key questions including who is allowed inside the office (and when), who can access what office resources (like the WiFi network), and what to do about guests.

A simple yet important question to answer is who gets an office key. Only trusted staff should have keys, and locks should be changed when staff leave and/or on a semi-regular basis. During the day, any doors that are left unlocked should be in constant view of someone trusted in the organization. Also consider whether the organization has a trusted relationship with your landlord or cleaning staff. Think about what information or devices such people might have access to and ensure that is protected, particularly if you do not have that trusted relationship. Whoever has access, someone trusted should always be designated to lock up the office and ensure devices are properly secured before leaving at the end of the day.

Are guests allowed inside the office? If so, ensure they do not have access (or at least unattended access) to devices or sensitive hard-copy data. If it is a requirement or expectation that guests have internet access when they visit, you should set up a “guest” network so that such guests do not have the ability to monitor your regular traffic. In general, only trusted personnel should be able to access the network and network devices such as printers. It is also usually a good idea to require guest registration so that you have a log of who has visited.

As you develop an office policy, the goal should be to allow only trusted people access to sensitive devices, documents, spaces, and systems.

SUPPORTING STAFF AND VOLUNTEERS

Physical security threats to your organization can impact your staff too. Similar to harassment on social media, these physical security threats often disproportionately impact women and marginalized communities. It is not just about broken windows and stolen laptops. Intimidation, threats or instances of physical or sexual violence, domestic abuse, and fear of attack can have a serious negative impact on the lives of staff. For organizations that work with or support politically active women in particular, NDI’s #Think10 Safety Planning Tool is a useful resource to provide those who might be at increased personal risk as a result of their activity.

The well-being of staff is obviously an important asset to them as individuals, but it is also a crucial element to a healthy and well-functioning organization. To that end, consider what additional resources you can provide to staff to keep them protected and, in the case of physical or digital attack, help them recover. As mentioned earlier in the Handbook, this means at a bare minimum developing a list of resources that you can connect staff to for legal, medical, mental health, and technical assistance if needed. Once again PEN America’s Online Field Harassment Manual includes ideas for how organizations can support staff during and after crises, and Tactical Tech’s Holistic Security Manual includes relevant content on how organizations often respond during times of intense threat.
SECURITY WHILE TRAVELING

Traveling - whether to another country or the town down the road - often intensifies physical information security risks. It is generally safe to assume that you and your devices have no privacy rights when crossing borders. As such, it is a good idea to include an organizational travel policy within your security plan that includes reminders about key security best practices. Your organization’s travel policy should include a lot of the information covered in other sections of the Handbook including securely using the internet and keeping devices and other information sources physically secure and with you at all times when travelling. If possible, leave your sensitive information behind and just use a fresh, cleanly erased computer, access the files you absolutely need from the cloud, and then erase it when getting home again.

In addition to preparing for travel and minimizing the data shared when you do travel, there are a few essential operational tips that you should think through and include in your organizational travel policy.

Consider using travel-specific laptops or phones that have little to no sensitive data stored on them. If most of your organization’s work is done in the cloud, a relatively inexpensive Chromebook can be a good option for such a device. Factory reset, or “wipe”, these devices upon their return before connecting to common WiFi networks at home or the office. Prepare staff for what to do if they are questioned by authorities or stopped at a border crossing. Consider how you can limit the amount of information that someone travels with if this is a concern, and create check-in protocols for staff travelling to sensitive regions. Provide staff with contact information and a plan of action for what they should do if something goes wrong on their trip. This includes information about local hospitals, clinics, or pharmacies should they need medical assistance while travelling.

Staff should also keep all devices on their person while travelling. For example, keep your laptop at your feet (not the overhead compartment or in checked luggage) when on a bus, train, or plane. Do not assume a hotel room – or even the hotel safe – is a "safe place" to keep sensitive devices and items. And do not trust public USB charging ports. USB charging ports in airports, stations, and vehicles are becoming an increasingly common sight, and a very convenient way to power up devices. But they can be an easy vector for picking up malware. So be sure to either charge devices the traditional way through a plug in the wall, or purchase USB data blockers to allow travelling staff to safely charge up their devices via USB.

Booking travel securely for your Organization

When putting together a travel policy, also keep in mind what information might be exposed when you organize or book travel. This can be particularly important if you are organizing large events, trainings, or conferences for which you are handling sensitive information from a variety of staff, partners, or attendees. Think carefully about how you will securely share and store (if needed) personal information like passport details, travel itineraries, and medical records. Tactical Tech’s Organizer Activity Book has a great worksheet to help your organization think through key questions related to travel security, linked here.
Protecting your Physical Security

- Remind staff to keep devices physically protected at all times.
- Check and secure all the ways people can get into your space - doors and windows.
- Develop an office guest and access policy.
- Use strong locks, and rotate/change them when needed.
- Consider setting up a camera or other office security system.
- Have and use a paper shredder.
 - Set up dedicated staff time to dispose of hard-copy documents that contain sensitive information.
- Develop a list of local professionals, organisations, and law enforcement agencies that you can connect staff to for legal, medical, and mental health assistance in response to physical attacks or threats.
- Develop an organizational travel policy.
- Ensure staff know what to do in case of emergency during travel, including preparing staff for what to do if stopped at a border or checkpoint.
- Ahead of any local, national, or international travel, remind staff to limit information stored on devices.
- Be mindful of the additional data that is created and shared when organizing travel or events.
What To Do When Things Go Wrong
So, you know the right things to do. You have put the policies in place and trained everybody in the organization on all the best practices. Even with all this hard work, it is very likely that something will eventually go wrong.

Stuff happens. When it does, it is essential to have an incident response plan in place. Incident response is a crucial, and often underrated, part of your organization’s security plan because it can be the difference between an attack destroying your organization’s reputation or being an unpleasant bump in the road. Keep in mind that you can only respond to an incident if you know about it. Having a strong organizational security culture and encouraging staff to report problems is very important. This is why it is better to reward good security behavior rather than punish security lapses or mistakes. It is also important to express empathy and check on the wellbeing of staff when they report an incident. You want staff to immediately report a clicked link in a phishing message, a stolen phone, or a hacked social media account - not hesitate for fear of retribution or lack of support. After all, incident response, just like the mitigation strategies mentioned in other sections of the Handbook, is an organization-wide effort.

- So, what should you plan for? In short, anything that is somewhat likely to happen. That will look different for every organization, but common questions that an incident response plan will help answer include:
- What do we do if our accounts or websites get hacked?
- What do we do if someone clicks on a phishing email or if a device is acting suspiciously?
- What do we do if our emails or most sensitive documents are stolen and leaked?
- What do we do if one of our employees is put in physical danger or arrested? Or if they are struggling with stress and anxiety due to such threats?
- What do we do if our office is damaged in a fire, flood, or natural disaster?
- What do we do if an employee’s computer or phone is lost or stolen?

The answers to these questions and others will differ by organization, but it is important to think through them together and clearly articulate and share a plan so that everyone in your organization is prepared to take action immediately to limit the damage.

Borrowing from Tactical Tech’s Holistic Security Guide, a good place to start with an incident response plan is defining an incident or an emergency in the context of your organization. Decide what an ‘emergency’ is – i.e. the point at which we should begin to implement the actions and contingency measures planned. This is important as sometimes it will be unclear – if you imagine a scenario such as losing contact with a colleague on a field mission; how long would you wait before declaring an emergency? One does not want to jump too early, but waiting too long can in some circumstances be disastrous. It is also important to think through any operations steps as well. Assign each person a clear role that they are aware of and have agreed to in advance – this will reduce disorganisation and panic in the event of an incident. In the case of each threat, consider the different roles that you may have to assume and the practicalities involved in responding to an emergency. Within this important strategy for emergencies is the activation of a support network – a broad network of allies, which may include friends and family, community, local allies, government resources and national or international allies like NGOs and journalists. How can your allies support you? Should you contact them in advance to verify that they will be willing to help you in an emergency and let them know what you expect of them?

When responding to an incident, effective communications become increasingly important. Decide what the most secure and effective means of communicating with each actor is in different scenarios and identify a back-up means too. Be aware that for emergencies, it might be useful to have clear guidelines on what to (and what not to) communicate, when to communicate, which channels to use to communicate, and with whom you should communicate. Also consider the reputational impact of an incident on your organization, and be prepared to respond accordingly. Make sure that the organization’s communications lead (in some organizations this might just be whoever manages the Facebook page or the Twitter account) is aware of the incident and can watch social media or other media for potential impact. They should also be prepared to field possible public or media inquiries about an incident if relevant. This is especially important for getting ahead of any potential negative stories or reputational damage. While every incident and context is different, honest and transparent communications often help build trust in the aftermath of an incident.
Creating an Early Alert and Response System

Consider establishing an Early Alert and Response System. Such a system sounds fancy, but it is essentially just a centralised document (electronic or otherwise) to be opened in the event of an emergency. In the document, you should record all the details about the security indicators and incidents which have occurred on a timeline, provide a clear description of the actions and sequence for the planned response, and indicate what needs to be achieved to signify that the risk has once again decreased. It should also include actions to be taken after an incident in order to protect those involved from further harm and help them to recover physically and emotionally. An Early Alert and Response System can provide useful documentation for sharing with law enforcement (if applicable), subsequent analysis of what has happened, and guidance on how to improve your prevention tactics and responses to threats in the future.

In addition to these important incident response concepts, your organization should also prepare for any specific technical response. In some cases a technical response can be managed by internal IT staff or system administrators. For example, if an email account appears to have been hacked, your account administrator should be prepared and able to shut down or disable the impacted account. Some technical incidents, however, might require expertise that you do not have within your organization. For situations like these, it is important to identify a trusted list of external technical experts who can assist you in your incident response. In some cases, you may want to pre-negotiate terms with service providers (such as your website host or an IT consultant) to ensure that they are available (and would not charge extra) for such technical incident response.

Last but certainly not least, you should consider legal steps. Understanding the legal protections you might have, as well as the legal obligations or consequences your organization might face as a result of a data breach or other security incident, is important. A first step can be to identify trusted legal counsel that understands your country or locality’s specific laws and regulations. Take some time to review possible incidents with this person and make a plan for what you would do in response. It is a good idea to make an agreement with this trusted counsel to represent you and your interests if needed in the aftermath of an incident as well. As part of this legal preparation, make sure that you understand the legal obligations of any vendors or partners. Are they required to notify you in the case of their own data breach? What support (if any) are they required to provide you in the case of an incident? As you develop contracts and agreements with external vendors, keep the possibility of a data breach or other incident in mind.

While there is no one-size fits all approach to incident response, having clear operational, communications, technical, and legal plans in place is essential. As you put together your incident response plan, we strongly encourage you to make use of some excellent existing resources, designed to help civil society organizations and other high-risk groups navigate incident response. These resources include the Digital First Aid Kit developed by RaReNet and CiviCERT, PEN America’s Online Harassment Field Manual, the Belfer Center’s Cybersecurity Campaign Playbook and Cyber Incident Communications Plan Template, and Access Now’s Digital Security Helpline.
Incident Response

- Develop an organizational incident response plan, and practice it.
 - Brainstorm possible incidents and prepare for your response before it happens.
- Ensure everyone in the organization is aware of how you will communicate and what technical steps will be taken in the case of an incident.
- Take time to understand your legal protections and obligations.
- Be prepared to provide organizational staff the emotional and social support they need in the aftermath of an incident.
Appendix A: Recommended Resources

- Tactical Tech’s Holistic Security Manual; Creative Commons Attribution-ShareAlike 4.0 International License
 - Chapter 2.4 - Understanding and Cataloguing Our Information
 - Chapter 1.5 - Communicating about Threats in Teams and Organizations
- The Electronic Frontier Foundation’s Security Education Companion; Creative Commons Attribution 3.0 US License
 - Threat Modeling Activity Handout
- Freedom of the Press Foundation’s Phishing Prevention and Email Hygiene Guide; Creative Commons Attribution 4.0 International License
- Freedom of the Press Foundation’s Locking Down Signal Guide; Creative Commons Attribution 4.0 International License
- Electronic Frontier Foundation’s Surveillance Self Defense (SSD) Guide; Creative Commons Attribution 3.0 US License
 - What Should I Know About Encryption
 - Communicating with Others
 - Choosing the VPN That’s Right for You
- Frontline Defenders’ Guide to Secure Group Chat and Conferencing Tools
- Tactical Tech’s Data Detox Kit
 - Let the Right One In: Make Your Passwords Stronger
 - Strengthen Your Screen Locks
- Center for Democracy and Technology’s Elections Security Guide on Passwords; Creative Commons Attribution 4.0 International License
- Center for Democracy and Technology’s Elections Security Guide on Two Factor Authentication; Creative Commons Attribution 4.0 International License
- Martin Shelton’s Two Factor Authentication for Beginners; Creative Commons Attribution 4.0 International License
- Tactical Tech and Frontline Defender’s Security in a Box; Creative Commons Attribution-ShareAlike 3.0 Unported License
 - Protect your device from malware and phishing attacks
 - Protect your information from physical threats
- SANS’ Ouch! Newsletter: Stop That Malware
- Apple’s Device and Data Access when Personal Safety is At Risk
- Global Cyber Alliance Cyber Hygiene for Mission-Based Organizations
Use the following starter kit to take notes as you and your organization read through the Handbook and digest the material, and consider the accompanying questions with your colleagues to help generate productive discussion.

Be sure to reference the key “building blocks” in each section of the Handbook too to ensure that you are covering the important topics as you build your security plan. By the end of the Handbook, the building blocks, answers to these discussion questions, and your notes should form the foundation of a successful security plan!
Building a Culture of Security

QUESTIONS TO CONSIDER:

- When can you schedule a conversation to review your security plan with the entire organization?
- What days or times work well for the organization to schedule regular conversations and training about security?
- What steps can leadership take to model good security behavior and a commitment to a security plan? How can others in the organization play a role in security?

YOUR NOTES AND IDEAS:
A Strong Foundation: Securing Accounts and Devices

QUESTIONS TO CONSIDER:

• How will you implement account security measures - like a password manager and 2FA - across the organization? What obstacles might you encounter during implementation?

• How will your organization ensure that devices are kept secure and updated? As part of this, will the organization need a plan to address unlicensed software or computers?

• When is a good time to set up training for all staff on the dangers of phishing, malware, and device security best practices?

YOUR NOTES AND IDEAS:
Communicating and Storing Data Securely

QUESTIONS TO CONSIDER:

• How will your organization implement end-to-end encrypted messaging for secure communication? What obstacles might you encounter during implementation?

• How will your organization enforce a secure file sharing solution both internally and externally? What obstacles might you encounter during implementation?

• How will your organization implement a secure data storage and backup solution? What obstacles might you encounter during implementation?

YOUR NOTES AND IDEAS:
Staying Safe on the Internet

QUESTIONS TO CONSIDER:

- How will your organization implement secure browsing requirements such as HTTPS, a trusted browser, and, if appropriate, a VPN for staff?
- What will be the key elements of your organization’s social media policy? How will it be enforced?
- How will your organization protect its websites and web properties?

YOUR NOTES AND IDEAS:
QUESTIONS TO CONSIDER:

- How will the organization distribute and enforce its office guest and access policy?
- Who is responsible for preparing staff for the physical and digital security challenges that they might face while on travel for work?
- What steps can staff take to keep their devices safe and secure both at the office and while on travel?

YOUR NOTES AND IDEAS:
QUESTIONS TO CONSIDER:

- How will the organization distribute and practice its incident response policy?
- Are there resources available for staff who might be in need of emotional and social support in the aftermath of an incident? If not, how might the organization be able to provide those resources in case of an incident?

YOUR NOTES AND IDEAS: